已知{an}满足:12a1+22a2+32a3+…+n2an=(n(n+1)2)2(n=1,2,3,…).(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn}满足,bn=a2n2an+1(n=1,2,3,

题目简介

已知{an}满足:12a1+22a2+32a3+…+n2an=(n(n+1)2)2(n=1,2,3,…).(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn}满足,bn=a2n2an+1(n=1,2,3,

题目详情

已知{an}满足:
12
a1
+
22
a2
+
32
a3
+…+
n2
an
=(
n(n+1)
2
)2
 (n=1,2,3,…).
(Ⅰ) 求{an}的通项公式;
(Ⅱ) 若数列{bn}满足,bn=
a2n
2an+1
(n=1,2,3,…),试{bn}前n项的和Sn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由
12
a1
+
22
a2
+…+
n2
an
=(
n(n+1)
2
)2

当n≥2时,
12
a1
+
22
a2
+…+
(n-1)2
an-1
=(
n(n-1)
2
)2

①-②得:
n2
an
=
n(n+1)+n(n-1)
2
×
n(n+1)-n(n-1)
2
=n3,
所以,an=class="stub"1
n
(n≥2).
当n=1时,a1=1符合an=class="stub"1
n
,所以,an=class="stub"1
n

(Ⅱ)由bn=
an2
2an+1
=
class="stub"1
n2
class="stub"2
n
+1
=class="stub"1
n(n+2)

所以,Sn=b1+b2+…+bn
=class="stub"1
2
(1-class="stub"1
3
+class="stub"1
2
-class="stub"1
4
+class="stub"1
3
-class="stub"1
5
+…+class="stub"1
n-1
-class="stub"1
n+1
+class="stub"1
n
-class="stub"1
n+2
)

=class="stub"1
2
(1+class="stub"1
2
-class="stub"1
n+1
-class="stub"1
n+2
)

=class="stub"3
4
-class="stub"2n+3
2(n+1)(n+2)

更多内容推荐