函数f(x)=cos(2x-π3)+2sin(x-π4)sin(x+π4),x∈[-π12,π2]的值域是______.-数学

题目简介

函数f(x)=cos(2x-π3)+2sin(x-π4)sin(x+π4),x∈[-π12,π2]的值域是______.-数学

题目详情

函数f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4
)
,x∈[-
π
12
π
2
]
的值域是______.
题型:填空题难度:中档来源:不详

答案

函数f(x)=cos(2x-class="stub"π
3
)+2sin(x-class="stub"π
4
)sin(x+class="stub"π
4

=class="stub"1
2
sin2x+
3
2
sin2x+(sinx-cosx)(sinx+cosx)
=class="stub"1
2
cos2x+
3
2
sin2x+sin2x-cos2x
=class="stub"1
2
cos2x+
3
2
sin2x-cos2x
=sin(2x-class="stub"π
6
),
∵x∈[-class="stub"π
12
class="stub"π
2
],∴2x-class="stub"π
6
∈[-class="stub"π
3
class="stub"5π
6
],
因为f(x)=sin(2x-class="stub"π
6
)在区间[-class="stub"π
12
class="stub"π
3
]上单调递增.
在区间[class="stub"π
3
class="stub"π
2
]单调递减,所以当x=class="stub"π
3
,f(x)取最大值l.
又∵f(-class="stub"π
12
)=-
3
2
<f(class="stub"π
2
)=class="stub"1
2

当x=-class="stub"π
12
时,f(x)取最小值-
3
2

所以函数f(x)在区间上的值域为[-
3
2
,1].
故答案为:[-
3
2
,1]

更多内容推荐