设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设a=12,c=12,bn=n(1-an)(n∈N*),求数列{bn

题目简介

设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设a=12,c=12,bn=n(1-an)(n∈N*),求数列{bn

题目详情

设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设a=
1
2
,c=
1
2
bn=n(1-an)(n∈N*)
,求数列{bn}的前n项和Sn
题型:解答题难度:中档来源:枣庄一模

答案

(Ⅰ)∵an+1=can+1-c,an+1-1=c(an-1),
∴当a1=a≠1时,{an-1}是首项为a-1,公比为c的等比数列
∴an-1=(a-1)cn-1
当a=1时,an=1仍满足上式.
∴数列{an-1}的通项公式为an=(a-1)cn-1+1(n∈N*);
(Ⅱ)由(1)得,当a=class="stub"1
2
,c=class="stub"1
2
时,
bn=n(1-an)=n{1-[1-(class="stub"1
2
)n]}=n(class="stub"1
2
)n

Sn=b1+b2++bn=class="stub"1
2
+2×(class="stub"1
2
)2+3×(class="stub"1
2
)3++n×(class="stub"1
2
)n
class="stub"1
2
Sn=(class="stub"1
2
)2+2×(class="stub"1
2
)3++n×(class="stub"1
2
)n+1

两式作差得class="stub"1
2
Sn=class="stub"1
2
+(class="stub"1
2
)2++(class="stub"1
2
)n-n×(class="stub"1
2
)n+1

Sn=1+class="stub"1
2
+(class="stub"1
2
)2++(class="stub"1
2
)n-1-n×(class="stub"1
2
)n

=
1-(class="stub"1
2
)
n
1-class="stub"1
2
-n×(class="stub"1
2
)n=2×(1-class="stub"1
2n
)-class="stub"n
2n

Sn=2-class="stub"n+2
2n

更多内容推荐