数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于()A.13B.512C.12D.712-数学

题目简介

数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于()A.13B.512C.12D.712-数学

题目详情

数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于(  )
A.
1
3
B.
5
12
C.
1
2
D.
7
12
题型:单选题难度:中档来源:不详

答案

∵an•bn=1
∴bn=class="stub"1
n2+3n+2
=class="stub"1
(n+1)(n+2)

∴s10=class="stub"1
2×3
+class="stub"1
3×4
+   + class="stub"1
10×11
+class="stub"1
11×12
=( class="stub"1
2
-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
4
) +    +(class="stub"1
10
-class="stub"1
11
) +(class="stub"1
11
-class="stub"1
12
)
=class="stub"1
2
-class="stub"1
12
=class="stub"5
12

故选项为B.

更多内容推荐