若定义在R上的减函数y=f(x),对于任意x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0都成立,且函数y=f(x-1)的图象关于点(1,0)对称,则当1≤x≤4时,yx的取值范围是()A.[

题目简介

若定义在R上的减函数y=f(x),对于任意x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0都成立,且函数y=f(x-1)的图象关于点(1,0)对称,则当1≤x≤4时,yx的取值范围是()A.[

题目详情

若定义在R上的减函数y=f(x),对于任意x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0都成立,且函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
y
x
的取值范围是(  )
A.[-
1
4
,1)
B.[-
1
4
,1]
C.(-
1
2
,1]
D.[-
1
2
,1]
题型:单选题难度:偏易来源:不详

答案

根据函数y=f(x-1)的图象关于点(1,0)对称,可知函数是奇函数,所以由f(x2-2x)+f(2y-y2)≤0得f(x2-2x)≤f(-2y+y2),∵在R上的减函数y=f(x),∴x2-2x≥-2y+y2,∴x≥y或x+y≤2,∵1≤x≤4,∴-class="stub"1
2
≤class="stub"y
x
≤1
,故选D.

更多内容推荐