已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a、b∈[-1,1],a+b≠0时,有f(a)+f(b)a+b>0.判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.-

题目简介

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a、b∈[-1,1],a+b≠0时,有f(a)+f(b)a+b>0.判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.-

题目详情

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a、b∈[-1,1],a+b≠0时,有
f(a)+f(b)
a+b
>0.判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.
题型:解答题难度:中档来源:不详

答案

任取x1、x2∈[-1,1],且x1<x2,则-x2∈[-1,1].又f(x)是奇函数,于是
f(x1)-f(x2)=f(x1)+f(-x2)
=
f(x1)+f(-x2)
x1+(-x2)
•(x1-x2).
据已知
f(x1)+f(-x2)
x1+(-x2)
>0,x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴f(x)在[-1,1]上是增函数.

更多内容推荐