(1)分解因式:x7+x5+1(2)对任何正数t,证明:t4-t+12>0.-数学

题目简介

(1)分解因式:x7+x5+1(2)对任何正数t,证明:t4-t+12>0.-数学

题目详情

(1)分解因式:x7+x5+1
(2)对任何正数t,证明:t4-t+
1
2
>0.
题型:解答题难度:中档来源:不详

答案

(1)x7+x5+1=x7+x6+x5-x6+1
=x5(x2+x+1)-(x3+1)(x3-1)
=(x2+x+1)[x5-(x-1)(x3+1)]
=(x2+x+1)(x5-x4+x3-x+1),
(2)t4-t+class="stub"1
2
=(t4-t2+class="stub"1
4
)+(t2-t+class="stub"1
4
)  
=(t2-class="stub"1
2
)2+(t-class="stub"1
2
)2≥0  
因为(t2-class="stub"1
2
)2与(t-class="stub"1
2
)2不可能同时为0,故等于不成立,因此有:t4-t+class="stub"1
2
>0.

更多内容推荐