已知数列{an}的前n项和Sn和通项an满足Sn=12(1-an).(Ⅰ)求数列{an}的通项公式;(Ⅱ)求证:Sn<12;(Ⅲ)设函数f(x)=log13x,bn=f(a1)+f(a2)+…+f(a

题目简介

已知数列{an}的前n项和Sn和通项an满足Sn=12(1-an).(Ⅰ)求数列{an}的通项公式;(Ⅱ)求证:Sn<12;(Ⅲ)设函数f(x)=log13x,bn=f(a1)+f(a2)+…+f(a

题目详情

已知数列{an}的前n项和Sn和通项an满足Sn=
1
2
(1-an)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:Sn
1
2

(Ⅲ)设函数f(x)=log
1
3
x,bn=f(a1)+f(a2)+…+f(an),求
n


i=1
1
bi
题型:解答题难度:中档来源:揭阳二模

答案

(Ⅰ)当n≥2时,an=class="stub"1
2
(1-an)-class="stub"1
2
(1-an-1)=-class="stub"1
2
an+class="stub"1
2
an-1

∴2an=-an+an-1
an
an-1
=class="stub"1
3
,----------------------------------(4分)
S1=a1=class="stub"1
2
(1-a1)
a1=class="stub"1
3

∴数列{an}是首项a1=class="stub"1
3
、公比为class="stub"1
3
的等比数列,
an=class="stub"1
3
×(class="stub"1
3
)n-1=(class="stub"1
3
)n
------(6分)
(Ⅱ)证明:由Sn=class="stub"1
2
(1-an)
Sn=class="stub"1
2
[1-(class="stub"1
3
)n]
---------------------------------(8分)
1-(class="stub"1
3
)n<1
,∴class="stub"1
2
[1-(class="stub"1
3
)n]<class="stub"1
2

Sn<class="stub"1
2
---------------------------------------------------------(10分)
(Ⅲ)∵f(x)=logclass="stub"1
3
x

bn=logclass="stub"1
3
a1+logclass="stub"1
3
a2+…+logclass="stub"1
3
an
=logclass="stub"1
3
(a1a2an)

=logclass="stub"1
3
(class="stub"1
3
)1+2+…+n=1+2+…+n=
n(1+n)
2
-------------------(12分)
class="stub"1
bn
=class="stub"2
n(1+n)
=2(class="stub"1
n
-class="stub"1
n+1
)

n


i=1
class="stub"1
bi
=class="stub"1
b1
+class="stub"1
b2
+…+class="stub"1
bn
=2[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)]
=class="stub"2n
n+1
--------(14分)

更多内容推荐