已知f(x)=a1x+a2x2+a3x3+…+anxn,且a1,a2,a3,…,an组成等差数列(n为正偶数),又f(1)=n2,f(-1)=n;(1)求数列{an}的通项an;(2)求f(12)的值

题目简介

已知f(x)=a1x+a2x2+a3x3+…+anxn,且a1,a2,a3,…,an组成等差数列(n为正偶数),又f(1)=n2,f(-1)=n;(1)求数列{an}的通项an;(2)求f(12)的值

题目详情

已知f(x)=a1x+a2x2+a3x3+…+anxn,且a1,a2,a3,…,an组成等差数列(n为正偶数),又f(1)=n2,f(-1)=n;
(1)求数列{an}的通项an
(2)求f(
1
2
)的值;
(3)比较f(
1
2
)的值与3的大小,并说明理由.
题型:解答题难度:中档来源:不详

答案

(1)设数列的公差为d,
因为f(1)=a1+a2+a3+…+an=n2,则na1+
n(n-1)
2
d=n2,即2a1+(n-1)d=2n.
又f(-1)=-a1+a2-a3+…-an-1+an=n,即class="stub"n
2
×d=n,d=2.
解得a1=1.
∴an=1+2(n-1)=2n-1.
(2)f(class="stub"1
2
)=(class="stub"1
2
)+3(class="stub"1
2
)2+5(class="stub"1
2
)3+…+(2n-1)(class="stub"1
2
)n,①
两边都乘以class="stub"1
2
,可得class="stub"1
2
f(class="stub"1
2
)=(class="stub"1
2
)2+3(class="stub"1
2
)3+5(class="stub"1
2
)4+…+(2n-1)(class="stub"1
2
)n+1,②
①-②,得 class="stub"1
2
f( class="stub"1
2
)=class="stub"1
2
+2( class="stub"1
2
)2+2( class="stub"1
2
)3+…+2( class="stub"1
2
)n-(2n-1)( class="stub"1
2
)n+1,
class="stub"1
2
f( class="stub"1
2
)=class="stub"1
2
+class="stub"1
2
+( class="stub"1
2
)2+…+( class="stub"1
2
)n-1-(2n-1)( class="stub"1
2
)n+1.
∴f( class="stub"1
2
)=1+1+class="stub"1
2
+class="stub"1
22
+…+class="stub"1
2n-2
-(2n-1)class="stub"1
2n
=1+
1-class="stub"1
2n-1
1-class="stub"1
2
-(2n-1)class="stub"1
2n
=1+2-class="stub"1
2n-2
-(2n-1)class="stub"1
2n
=3-(2n+3)(class="stub"1
2
)n;
则f(class="stub"1
2
)=3-(2n+3)(class="stub"1
2
)n;
(3)由(2)的结论,f(class="stub"1
2
)=3-(2n+3)(class="stub"1
2
)n,
又由(2n+3)(class="stub"1
2
)n>0,
易得3-(2n+3)(class="stub"1
2
)n<3,
则f(class="stub"1
2
)<3.

更多内容推荐