在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.(Ⅰ)确定点G的位置;(Ⅱ)求直线AC1与平面EFG所成角θ
题目简介
在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.(Ⅰ)确定点G的位置;(Ⅱ)求直线AC1与平面EFG所成角θ
题目详情
(Ⅰ)确定点G的位置;
(Ⅱ)求直线AC1与平面EFG所成角θ的大小.
答案
设G(0,2,h),则
∴-1×0+1×(-2)+2h="0. " ∴h=1,即G是AA1的中点.
(Ⅱ)设
所以
∵
∴
解法二:(Ⅰ)取AC的中点D,连结DE、DG,则ED//BC
∵CC1∩AC=C,∴ED⊥平面A1ACC1.
又∵AC1⊥EG,∴AC1⊥DG.
连结A1C,∵AC1⊥A1C,∴A1C//DG.
∵D是AC的中点,∴G是AA1的中点.
(Ⅱ)取CC1的中点M,连结GM、FM,则EF//GM,
∴E、F、M、G共面.作C1H⊥FM,交FM的延长线于H,∵AC⊥平面BB1C1C,
C1H
∴C1H⊥平面EFG,设AC1与MG相交于N点,所以∠C1NH为直线AC1与平面EFG所成角θ.
因为