已知函数f(x)=logmx-3x+3若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明.-数学

题目简介

已知函数f(x)=logmx-3x+3若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明.-数学

题目详情

已知函数f(x)=logm
x-3
x+3
若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明.
题型:解答题难度:中档来源:不详

答案

当0<m<1时,f(x)为减函数;m>1时,f(x)为增函数.
∵f(x)的定义域为[α,β](β>α>0),则[α,β]⊂(3,+∞).
设x1,x2∈[α,β],则x1<x2,且x1,x2>3,
f(x1)-f(x2)=logm
x1-3
x1+3
-logm
x2-3
x2+3
=logm
(x1-3)(x2+3)
(x1+3)(x2-3)

∵(x1-3)(x2+3)-(x1+3)(x2-3)=6(x1-x2)<0,
∴(x1-3)(x2+3)<(x1+3)(x2-3)即
(x1-3)(x2+3)
(x1+3)(x2-3)
<1

∴当0<m<1时,logm
(x1-3)(x2+3)
(x1+3)(x2-3)
>0
,即f(x1)>f(x2);
当m>1时,logm
(x1-3)(x2+3)
(x1+3)(x2-3)
<0
,即f(x1)<f(x2),
故当0<m<1时,f(x)为减函数;m>1时,f(x)为增函数.

更多内容推荐