已知函数f(x)=ax2+bx+c满足f(1)=1,f(-1)=-1.(1)求实数b值;(2)若不等式f(x)≥-2恒成立,求实数a的取值范围;(3)设函数y=f(x)存在最大值M(a),求M(a)的

题目简介

已知函数f(x)=ax2+bx+c满足f(1)=1,f(-1)=-1.(1)求实数b值;(2)若不等式f(x)≥-2恒成立,求实数a的取值范围;(3)设函数y=f(x)存在最大值M(a),求M(a)的

题目详情

已知函数f(x)=ax2+bx+c满足f(1)=1,f(-1)=-1.(1)求实数b值;(2)若不等式f(x)≥-2恒成立,求实数a的取值范围;(3)设函数y=f(x)存在最大值M(a),求M(a)的最小值.
题型:解答题难度:中档来源:不详

答案

(1)∵函数f(x)=ax2+bx+c满足f(1)=1,f(-1)=-1,
∴a+b+c=1,a-b+c=-1,解得 b=1,且 a+c=0.
(2)由上知 f(x)=ax2+x-a,
∵不等式f(x)≥-2恒成立,
∴ax2+x+2-a≥0 恒成立,
a>0
△ = 1 - 4a(2-a)≤0
,解得 0<a≤1+
3
2

故实数a的取值范围为 {a|0<a≤1+
3
2
}.
(3)由函数y=f(x)存在最大值M(a),f(x)=ax2+x-a,
故a<0,且最大值 M(a)=
-4a2-1
4a
=(-a)+( class="stub"-1
4a
)≥2
class="stub"1
4
=1,
当且仅当 (-a)=( class="stub"-1
4a
),即 a=-class="stub"1
2
 时,等号成立,
故M(a)的最小值为1.

更多内容推荐