已知函数f(x)的定义域是{x|x∈R且x≠kπ+π2(k∈Z},函数f(x)满足f(x)=f(x+π),当x∈(-π2,π2)时,f(x)=2x+sinx.设a=f(1),b=f(2),c=f(3)

题目简介

已知函数f(x)的定义域是{x|x∈R且x≠kπ+π2(k∈Z},函数f(x)满足f(x)=f(x+π),当x∈(-π2,π2)时,f(x)=2x+sinx.设a=f(1),b=f(2),c=f(3)

题目详情

已知函数f(x)的定义域是{x|x∈R且x≠kπ+
π
2
 (k∈Z}
,函数f(x)满足f(x)=f(x+π),当x∈(-
π
2
, 
π
2
)
时,f(x)=2x+sinx.设a=f(1),b=f(2),c=f(3),则(  )
A.a<c<bB.b<c<aC.c<b<aD.c<a<b
题型:单选题难度:偏易来源:不详

答案

∵f(x)=f(x+π),
∴f(x)=f(x-π),
∴c=f(3)=f(-0.14 )
f(2)=f(-1.14)
又因为class="stub"π
2
>1>-0.14>-1.14>-class="stub"π
2

且 f(x)=2x+sinx在 x∈(-class="stub"π
2
class="stub"π
2
)上为增函数,
所以b<c<a,
故选B

更多内容推荐