已知函数f(x)=3cos(2x-π3)+sin(2x-π3),(1)若f(x)=1,求实数x的解集;(2)将函数y=f(x)的图象向右平移π6个单位后,再将得到的函数图象上的各点横坐标伸长到原来的2

题目简介

已知函数f(x)=3cos(2x-π3)+sin(2x-π3),(1)若f(x)=1,求实数x的解集;(2)将函数y=f(x)的图象向右平移π6个单位后,再将得到的函数图象上的各点横坐标伸长到原来的2

题目详情

已知函数f(x)=
3
cos(2x-
π
3
)+sin(2x-
π
3
)

(1)若f(x)=1,求实数x的解集;
(2)将函数y=f(x)的图象向右平移
π
6
个单位后,再将得到的函数图象上的各点横坐标伸长到原来的2倍,得到函数g(x),若g(x)=
6
5
,求cos(x+
π
6
)+cos(2x-
3
)
的值.
题型:解答题难度:中档来源:不详

答案

(1)由f(x)=2sin2x=1,可得sin2x=class="stub"1
2
,解得x=class="stub"π
12
+kπ
,或x=class="stub"5π
12
+kπ
,k∈Z,
故实数x的解集为{x|x=class="stub"π
12
+kπ
,或x=class="stub"5π
12
+kπ
},k∈Z.
(2)∵函数f(x)=
3
cos(2x-class="stub"π
3
)+sin(2x-class="stub"π
3
)
=2[
3
2
cos(2x-class="stub"π
3
)+class="stub"1
2
sin(2x-class="stub"π
3
)]
=2sin(2x-class="stub"π
3
+class="stub"π
3
)=2sin2x.
将函数y=f(x)的图象向右平移class="stub"π
6
个单位后,得到函数y=2sin2(x-class="stub"π
6
)=2sin(2x-class="stub"π
3
)的图象,
再将得到的函数图象上的各点横坐标伸长到原来的2倍,得到函数g(x)=2sin[2•class="stub"1
2
•x-class="stub"π
3
)]=2sin(x-class="stub"π
3
)的图象,
由g(x)=class="stub"6
5
 可得,sin(x-class="stub"π
3
)=class="stub"3
5

cos(x+class="stub"π
6
)+cos(2x-class="stub"2π
3
)
=
-sin(x+class="stub"π
6
-class="stub"π
2
)+cos(2(x-class="stub"π
3
))=-sin(x-class="stub"π
3
)+1-2sin2(x-class="stub"π
3
)
=-class="stub"3
5
+1
-2×class="stub"9
25
=-class="stub"8
25

更多内容推荐