已知偶函数y=f(x)满足:当x≥2时,f(x)=(x-2)(a-x),a∈R,当x∈[0,2)时,f(x)=x(2-x)(1)求当x≤-2时,f(x)的表达式;(2)试讨论:当实数a、m满足什么条件

题目简介

已知偶函数y=f(x)满足:当x≥2时,f(x)=(x-2)(a-x),a∈R,当x∈[0,2)时,f(x)=x(2-x)(1)求当x≤-2时,f(x)的表达式;(2)试讨论:当实数a、m满足什么条件

题目详情

已知偶函数y=f(x)满足:当x≥2时,f(x)=(x-2)(a-x),a∈R,当x∈[0,2)时,f(x)=x(2-x)
(1)求当x≤-2时,f(x)的表达式;
(2)试讨论:当实数a、m满足什么条件时,函数g(x)=f(x)-m有4个零点,且这4个零点从小到大依次构成等差数列.
题型:解答题难度:中档来源:不详

答案

(1)设x≤-2则-x≥2,∴f(-x)=(-x-2)(a+x),
又∵y=f(x)为偶函数,∴f(-x)=f(x),
所以  f(x)=(-x-2)(a+x)…(3分)
(2)设f(x)-m的零点从左到右依次为x1,x2,x3,x4,即y=f(x)与y=m交点有4个,
(Ⅰ)a≤2时,
x1+x2=-2
2x2=x1+x3
x2+x3=0
,解得x1=-class="stub"3
2
x2=-class="stub"1
2
x3=class="stub"1
2
x4=class="stub"3
2

所以a≤2时,m=f(class="stub"1
2
)=class="stub"3
4
 …(5分)
(Ⅱ)2<a<4且m=class="stub"3
4
时,可得(class="stub"a
2
-1)2<class="stub"3
4
,解得-
3
+2<a<
3
+2

所以当2<a<
3
+2
时,m=class="stub"3
4
…(7分)
(Ⅲ)当a=4时m=1时,符合题意…(8分)
(IV)a>4时,m>1,
x3+x4=2+a
2x3=x2+x4
x2+x3=0
,可解得x4=class="stub"6+3a
4

此时1<m<(class="stub"a
2
-1)2
,所以 a>
10+4
7
3
,或a<
10-4
7
3
(舍去)
故a>4且a>
10+4
7
3
时,m=-
3a2-20a+12
16
时存在   …(10分)
综上:①a<
3
+2
时,m=class="stub"3
4

②a=4时,m=1
③a>
10+4
7
3
时,m=-
3a2-20a+12
16
符合题意       …(12分)

更多内容推荐