(1)已知sin2α=-2425,α∈(-π2,π2),求sinα-cosα的值;(2)已知sin(α+β)=35,cos(α-β)=110.求[sinα+cos(π+α)][sinβ-sin(π2+

题目简介

(1)已知sin2α=-2425,α∈(-π2,π2),求sinα-cosα的值;(2)已知sin(α+β)=35,cos(α-β)=110.求[sinα+cos(π+α)][sinβ-sin(π2+

题目详情

(1)已知sin2α=-
24
25
α∈(-
π
2
π
2
)
,求sinα-cosα的值;
(2)已知sin(α+β)=
3
5
,cos(α-β)=
1
10
.求[sinα+cos(π+α)][sinβ-sin(
π
2
+β)]
的值.
题型:解答题难度:中档来源:不详

答案

(1)sin2α=2sinαcosα=-class="stub"24
25
<0
α∈(-class="stub"π
2
,class="stub"π
2
)

⇒sinα<0,cosα>0
⇒sinα-cosα<0
(sinα-cosα)2=1-2sinαcosα=1-sin2α=class="stub"49
25

sinα-cosα=-class="stub"7
5
…(6分)
(2)[sinα+cos(π+α)][sinβ-sin(class="stub"π
2
+β)]

=(sinα-cosα)(sinβ-cosβ)
=(sinαsinβ+cosαcosβ)-(sinαcosβ+cosαsinβ)
=cos(α-β)-sin(α+β)
=class="stub"1
10
-class="stub"3
5
=-class="stub"1
2
…(13分)

更多内容推荐