如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上(1)求证:EF=PF;(2)直线EF与以C为圆心,C

题目简介

如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上(1)求证:EF=PF;(2)直线EF与以C为圆心,C

题目详情

如图,在正方形ABCD中,E是AB边上任意一点,∠ECF= 45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上
(1)求证:EF=PF;
(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?

题型:解答题难度:中档来源:期末题

答案

解:(1)在正方形ABCD中,∠BCD=90°
        依题意△CDP是△CBE绕点C旋转90°得到,
        ∴∠ECP=90° CE=CP
        ∵∠ECF=45°, ∴∠FCP=∠ECP-∠ECF=90°-45°=45° ∴∠ECF=∠FCP
        又CF=CF, ∴△ECF≌△PCF。 ∴EF=PF。
     (2)相切。理由:过点C作CQ⊥EF于点Q。
       由(1)得,△ECF≌△PCF,∴∠EFC=∠PFC
       又CQ⊥EF,CD⊥FP,∴CQ=CD
      ∴直线EF与以C为圆心,CD为半径的圆相切。

更多内容推荐