设a=4π∫π2-π2cos2xdx,则(ax-1x)6展开式中含x2项的系数是()A.-192B.-190C.192D.190-数学

题目简介

设a=4π∫π2-π2cos2xdx,则(ax-1x)6展开式中含x2项的系数是()A.-192B.-190C.192D.190-数学

题目详情

设a=
4
π
π
2
-
π
2
cos2xdx,则(a
x
-
1
x
6展开式中含x2项的系数是(  )
A.-192B.-190C.192D.190
题型:单选题难度:偏易来源:不详

答案

f(x)=cos2x=class="stub"cos2x+1
2

∵f(-x)=f(x)∴f(x)为偶函数,
0-class="stub"π
2
 f(x)dx=
class="stub"π
2
0
f(x)dx

class="stub"π
2
0
f(x)dx=class="stub"1
2
class="stub"π
2
0
(cos2x+1)dx=class="stub"1
2
(class="stub"1
2
sin2x+x+a)
 class="stub"π
2
0
=class="stub"π
4

class="stub"π
2
-class="stub"π
2
f(x)dx=2•class="stub"π
4
=class="stub"π
2

又∴a=class="stub"4
π
class="stub"π
2
-class="stub"π
2
cos2xdx=2
(2
x
-class="stub"1
x
) 6= (class="stub"2x-1
x
) 6
=
(2x-1) 6
x 3
由二项式定理得展开式中含有x2的项为:
C16
(2x)5(-1) 1
x 3
=-192x 2

∴展开式中x2的系数为-192
故选A.

更多内容推荐