已知函数f(x)=1+a•(12)x+(14)x;g(x)=1-m•2x1+m•2x.(1)若对任意x∈[0,+∞),总有f(x)>0成立,求实数a的取值范围;(2)若m>0(m为常数),且对任意x∈

题目简介

已知函数f(x)=1+a•(12)x+(14)x;g(x)=1-m•2x1+m•2x.(1)若对任意x∈[0,+∞),总有f(x)>0成立,求实数a的取值范围;(2)若m>0(m为常数),且对任意x∈

题目详情

已知函数f(x)=1+a•(
1
2
)x
+(
1
4
)x
;g(x)=
1-m•2x
1+m•2x

(1)若对任意x∈[0,+∞),总有f(x)>0成立,求实数a的取值范围;
(2)若m>0(m为常数),且对任意x∈[0,1],总有|g(x)|≤M成立,求M的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)令t=(class="stub"1
2
)
x
,∵x∈[0,+∞),∴0<t≤1,且 t2+at+1>0恒成立,∴△=a2-4<0,解得-2<a<2,
故实数a的取值范围为(-2,2).
(2)令2x=h,则当x∈[0,1]时,h∈[1,2],|class="stub"1-mh
1+mh
|≤M恒成立.
∵m>0,而|class="stub"1-mh
1+mh
|=|-1+class="stub"2
1+mh
|≤1+class="stub"2
1+mh
≤1+class="stub"2
1+m
,∴1+class="stub"2
1+m
≤M,
故M的取值范围为[1+class="stub"2
1+m
,+∞).

更多内容推荐