已知数列{an}中,a1=a,a2=2,Sn是数列{an}的前n项和,且2Sn=n(3a1+an),n∈N*.(Ⅰ)求a的值;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若bn=2(n=1)8an+1•an

题目简介

已知数列{an}中,a1=a,a2=2,Sn是数列{an}的前n项和,且2Sn=n(3a1+an),n∈N*.(Ⅰ)求a的值;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若bn=2(n=1)8an+1•an

题目详情

已知数列{an}中,a1=a,a2=2,Sn是数列{an}的前n项和,且2Sn=n(3a1+an),n∈N*
(Ⅰ)求a的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=
2  (n=1) 
8
an+1an+2
(n≥2) 
Tn是数列{bn}的前n项和,且an+2Tn<m•
a2n+2
+2
对一切n∈N*都成立,求实数m取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵2Sn=n(3a1+an),S1=a1=a,
∴2a=4a,
所以a=0.…..(3分)
(Ⅱ)由(Ⅰ)知 Sn=
nan
2

Sn+1=
(n+1)an+1
2

an+1=Sn+1-Sn=
(n+1)an+1
2
-
nan
2

∴(n-1)an+1=nan.
∴当n≥2时,
an+1
an
=class="stub"n
n-1

an+1
an
=class="stub"n
n-1
an
an-1
=class="stub"n-1
n-2
,…,
a3
a2
=class="stub"2
1

an+1
a2
=n

∴an=2(n-1),n≥2.
∵a1=a=0满足上式,
∴an=2(n-1),n∈N*.…..(6分)
(Ⅲ)当n≥2时,bn=class="stub"8
2n•2(n+1)
=class="stub"2
n(n+1)
=2(class="stub"1
n
-class="stub"1
n+1
)
.…..(7分)
又b1=2,
∴Tn=b1+b2+…+bn=2+2(class="stub"1
2
-class="stub"1
3
)+…+2(class="stub"1
n
-class="stub"1
n+1
)
…..(9分)
=2+2(class="stub"1
2
-class="stub"1
n+1
)
=class="stub"3n+1
n+1

所以Tn=class="stub"3n+1
n+1
.…..(10分)
因为an+2Tn<m•
a2n+2
+2
对一切n∈N*都成立,
2(n+1)•class="stub"3n+1
n+1
<m•4(n+1)2+2
对一切n∈N*都成立.
m>class="stub"3
2
.class="stub"n
n2+2n+1
=class="stub"3
2
.class="stub"1
n+class="stub"1
n
+2
.…..(12分)
n+class="stub"1
n
≥2
,当且仅当n=class="stub"1
n
,即n=1时等号成立.
n+class="stub"1
n
+2≥4

class="stub"1
n+class="stub"1
n
+2
≤class="stub"1
4

m>class="stub"3
8
.…..(14分)

更多内容推荐