定义在R上的偶函数f(x)满足:“对任意x1,x2∈[0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(-2),f(),f(-3)的大小关系是[]A.f()>f(-3)>f(-2)B.f
A.f()>f(-3)>f(-2)B.f()<f(-3)<f(-2)C.f()>f(-2)>f(-3)D.f()<f(-2)<f(-3)
题目简介
定义在R上的偶函数f(x)满足:“对任意x1,x2∈[0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(-2),f(),f(-3)的大小关系是[]A.f()>f(-3)>f(-2)B.f
题目详情
A.f(
)>f(-3)>f(-2)
)<f(-3)<f(-2)
)>f(-2)>f(-3)
)<f(-2)<f(-3)
B.f(
C.f(
D.f(
答案