已知f(x)=a2x-12x+1(a∈R),是R上的奇函数.(1)求a的值;(2)求f(x)的反函数;(3)对任意的k∈(0,+∞)解不等式f-1(x)>log21+xk.-数学

题目简介

已知f(x)=a2x-12x+1(a∈R),是R上的奇函数.(1)求a的值;(2)求f(x)的反函数;(3)对任意的k∈(0,+∞)解不等式f-1(x)>log21+xk.-数学

题目详情

已知f(x)=
a2x-1
2x+1
(a∈R)
,是R上的奇函数.
(1)求a的值;
(2)求f(x)的反函数;
(3)对任意的k∈(0,+∞)解不等式f-1(x)>log2
1+x
k
题型:解答题难度:中档来源:不详

答案

(1)由题知f(0)=0,得a=1,
此时f(x)+f(-x)=
2x-1
2x+1
+
2-x-1
2-x+1
=
2x-1
2x+1
+
1-2x
1+2x
=0

即f(x)为奇函数.
(2)∵y=
2x-1
2x+1
=1-class="stub"2
2x+1
,得2x=class="stub"1+y
1-y
(-1<y<1)

f-1(x)=log2class="stub"1+x
1-x
(-1<x<1)

(3)∵f-1(x)>log2class="stub"1+x
k
,∴
class="stub"1+x
1-x
>class="stub"1+x
k
-1<x<1
,∴
x>1-k
-1<x<1

①当0<k<2时,原不等式的解集{x|1-k<x<1},
②当k≥2时,原不等式的解集{x|-1<x<1}.

更多内容推荐