如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H。(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=

题目简介

如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H。(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=

题目详情

如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H。
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=,求EB的长。
题型:解答题难度:偏难来源:广西自治区中考真题

答案

解:(1)在△GAD和△EAB中,
∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,
∴∠GAD=∠EAB,
又∵AG=AE,AB=AD,
∴△GAD≌△EAB,
∴EB=GD;
(2)EB⊥GD,理由如下:连接BD,
由(1)得:∠ADG=∠ABE,
则在△BDH中,
∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,
∴EB⊥GD;
(3)设BD与AC交于点O,
∵AB=AD=2,
在Rt△ABD中,DB=
∴EB=GD=

更多内容推荐