如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。-高三数学

题目简介

如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。-高三数学

题目详情

如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。
(Ⅰ)求证:BE=DE;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。
题型:证明题难度:中档来源:山东省高考真题

答案

证明:(I)设BD中点为O,连接OC,OE,
则由BC=CD知,CO⊥BD,
又已知CE⊥BD,EC∩CO=C,
所以BD⊥平面OCE
所以BD⊥OE,
即OE是BD的垂直平分线,
所以BE=DE。
(II)取AB中点N,连接MN,DN,
∵M是AE的中点,
∴MN∥BE,
又MN?平面BEC,BE?平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,
又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN?平面BEC,
BC?平面BEC,
∴DN∥平面BEC,
又MN∩DN=N,
故平面DMN∥平面BEC,
又DM?平面DMN,
∴DM∥平面BEC。

更多内容推荐