优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。-高三数学
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。-高三数学
题目简介
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。-高三数学
题目详情
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。
(Ⅰ)求证:BE=DE;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。
题型:证明题
难度:中档
来源:山东省高考真题
答案
证明:(I)设BD中点为O,连接OC,OE,
则由BC=CD知,CO⊥BD,
又已知CE⊥BD,EC∩CO=C,
所以BD⊥平面OCE
所以BD⊥OE,
即OE是BD的垂直平分线,
所以BE=DE。
(II)取AB中点N,连接MN,DN,
∵M是AE的中点,
∴MN∥BE,
又MN?平面BEC,BE?平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,
又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN?平面BEC,
BC?平面BEC,
∴DN∥平面BEC,
又MN∩DN=N,
故平面DMN∥平面BEC,
又DM?平面DMN,
∴DM∥平面BEC。
上一篇 :
如图所示,在四棱锥中,平面,,是中点
下一篇 :
如图,在四棱锥S-ABCD中,底面ABCD
搜索答案
更多内容推荐
如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°,(Ⅰ)求证:EF⊥平面BCE;(Ⅱ)设线段CD、AE的中点分别为P
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,CB=1,CA=,,AA1=,M为侧棱CC1上一点,AM⊥BA1。(1)求证:AM⊥平面A1BC;(2)求二面角B-AM-C的大小;(3)求点
如图1,△ABC是等腰直角三角形,AC=BC=4,E,F分别为AC,AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O在线段EC上,得到图2,(Ⅰ)求证:EF⊥A′C;(Ⅱ)若二面角A′
已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2。点A、D分别是RB、RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连结PB、PC。(1)求证:BC⊥PB;(2)求
如图,在四棱锥S-ABCD中,侧棱SA=SB=SC=SD,底面ABCD是菱形,AC与BD交于O点,(Ⅰ)求证:AC⊥平面SBD;(Ⅱ)若E为BC中点,点P在侧面△SCD内及其边界上运动,并保持PE⊥A
如图,直三棱柱中,,是棱的中点,。(1)证明:;(2)求二面角的大小。-高三数学
如图,棱柱ABCD-A1B1C1D1的所有棱长都为2,AC∩BD=O,侧棱AA1与底面ABCD所成的角为60°,A1O⊥平面ABCD,F为DC1的中点,(1)证明:BD⊥AA1;(2)证明:OF∥平面
如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAB为正三角形,AB=2,,PC⊥BD,E为AB的中点。(1)证明:PE⊥平面ABCD;(2)求二面角A-PD-B的大小。-高三数学
如图,在直三棱柱ABC-A1B1C1中,平面ABC⊥侧面A1ABB1。(1)求证:AB⊥BC;(2)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以
如图,直三棱柱ABC-A1B1C1中,已知AC=BC=AA1=a,∠ACB=90°,D是A1B1中点,(Ⅰ)求证:C1D⊥平面A1B1BA;(Ⅱ)请问,当点F在BB1上什么位置时,会使得AB1⊥平面C
如图,在三棱柱ABC-A1B1C1中,BB1⊥面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点,(Ⅰ)求证:AE⊥B1C;(Ⅱ)求异面直线AE与A1C所成的角;(Ⅲ)若G为C1C的中点,
在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上,(1)求证:BC⊥A1B;(2)若AD=,AB=BC=2,P是AC的中点,求三棱锥P-A1BC的体积。-高三数学
已知直三棱柱ABC-A1B1C1的所有棱长都相等,且D,E,F分别为BC,BB1,AA1的中点,(Ⅰ)求证:平面B1FC∥平面EAD;(Ⅱ)求证:BC1⊥平面EAD。-高三数学
一个四棱锥S-ABCD的底面是边长为a的正方形,且SA=a,SB=SD=a。(1)求证:SA⊥平面ABCD;(2)若SC为四棱锥中最长的侧棱,点E为AB的中点。求直线SE与平面SAC所成角的正弦值。-
平面图形如图4所示,其中是矩形,,,。现将该平面图形分别沿和折叠,使与所在平面都与平面垂直,再分别连接,得到如图2所示的空间图形,对此空间图形解答下列问题。(Ⅰ)证明-高三数学
如图,边长为2的等边三角形PCD所在的平面垂直于矩形ABCD所在的平面,,M为BC的中点。(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小;(3)求点D到平面AMP的距离。-高三数学
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD为正方形,E、F分别为AB、PC的中点,(1)求证:EF⊥平面PCD;(2)求平面PCB与平面PCD的夹角的余弦值
如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1,(Ⅰ)求证:AB⊥BC;(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为ψ,求证θ+ψ
如图,假设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别是B、D,如果增加一个条件,就能推出BD⊥EF,现有下面4个条件:①AC⊥β;②AC与α,β所成的角相等;③AC与BD在β内的射影在同一条直线上
如图,在四棱柱ABCD-PGFE中,侧棱PA⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1,(Ⅰ)求PC与AB所成角的余弦值;(Ⅱ)求证:BC⊥平面
如图,正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=a。(1)求证:AD⊥B1D;(2)求证:A1C∥平面AB1D;(3)求点A1到平面AB1D的距离。-高三数学
在直角梯形PBCD中,∠D=∠C=,BC=CD=2,PD=4,A为PD的中点,如下图,将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且,如下图。(1)求证:SA⊥平面ABCD;(2)
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F-BD-C的余弦值。-高三
下列5个正方体图形中,l是正方体的一条对角线,点M,N,P分别为其所在棱的中点,能得出l⊥面MNP的图形的序号是().(写出所有符合要求的图形序号)-高三数学
如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD,(1)证明:BD⊥AA1;(2)证明:平面AB1C∥平面DA1C1;(3)在直线CC1上是否存在点P,使BP∥
如图1,矩形ABCD中,AB=2AD=2a,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE,如图2。求证:AD⊥平面BDE。-高三数学
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。(1)证明:AE⊥PD;(2)若H为PD上的动点,EH与平面PAD所成最大角的正切
如下图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE中点,以AE为折痕将△ADE向上折起,使D为D',且D'B=D'C。(1)求证:D'O
如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,若E、F分别为PC、BD的中点,求证:(1)EF∥侧面PAD;(2)PA⊥平面PDC。-高二
如图在四棱锥P-ABCD中底面ABCD为直角梯形,∠BAD=90°,AD∥BC,BC=2AD;PA⊥底面ABCD,PA=AB=2,AD=,E为PC的中点,(1)证明:PC⊥平面BDE;(2)求二面角E
如图,四棱锥中,底面为菱形,底面,,是上的一点,。(1)证明:平面;(2)设二面角为,求与平面所成角的大小。-高三数学
在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱AA1于M,
如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点.(1)证明:SO⊥平面ABC;(2)求二面角A-SC-B的余弦值-高二数学
ABCD是平面α内的一个四边形,P是平面α外的一点,则△PAB,△PBC,△PCD,△PDA中是直角三角形的最多有()个。-高三数学
一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M,G分别是AB,DF的中点。(1)求证:CM⊥平面FDM;(2)在线段AD上确定一点P,使得CP∥平-高三数学
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=,点E是棱PB的中点。(1)证明:AE⊥平面PBC;(2)若AD=1,求二面角B-EC-D的平面角的余弦值。-高三数学
如图,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E、F分别是点A在PB、PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC;其中正确命题的序号是(
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,AD=,EF=2,BE=3,CF=4,(Ⅰ)求证:EF⊥平面DCE;(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°
在空间中,下列结论中正确的是[]A、垂直于同一平面的两个平面互相平行B、垂直于同一条直线的两条直线互相平行C、平行于同一条直线的两个平面互相平行D、垂直于同一条直线的两-高三数学
如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC,(Ⅰ)求证:BC⊥平面PAC;(Ⅱ)当D为PB的中点时,求AD
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1,(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小。
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点,(Ⅰ)证明:AC⊥SB;(Ⅱ)求二面角N-CM-B的大小;(Ⅲ)求点B到平面C
三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3。(1)求证:AB⊥BC;(2)如果AB=BC=2,求AC与侧面PAC所成角的大小。-高三数学
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB,(Ⅰ)求证:CE⊥平面PAD;(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABC
已知某几何体的直观图和三视图如下图所示,其正视图、侧视图均为直角三角形,俯视图为直角梯形。(1)M为AC中点,证明:BM⊥平面PAC:(2)设直线PD与平面PAC所成的角的正弦值为,求-高三数学
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC。(1)求证:PC⊥AB;(2)求二面角B-AP-C的大小;(3)求点C到平面APB的距离。-高三数学
如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD,(1)证明:BD⊥AA1;(2)证明:平面AB1C∥平面DA1C1;(3)在直线CC1上是否存在点P,使BP∥
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1,(Ⅰ)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O-AC-B的平
如图,已知正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3,点E在侧棱AA1上,点F在侧棱BB1上,且AE=,BF=。(1)求证:CF⊥C1E;(2)求二面角E-CF-C1的大小。-高三数学
如图,在△ABC中,∠B=90°,SA⊥平面ABC,点A在SB和SC上的射影分别为M、N,求证:MN⊥SC。-高一数学
返回顶部
题目简介
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。-高三数学
题目详情
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。
答案
则由BC=CD知,CO⊥BD,
又已知CE⊥BD,EC∩CO=C,
所以BD⊥平面OCE
所以BD⊥OE,
即OE是BD的垂直平分线,
所以BE=DE。
(II)取AB中点N,连接MN,DN,
∵M是AE的中点,
∴MN∥BE,
又MN?平面BEC,BE?平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,
又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN?平面BEC,
BC?平面BEC,
∴DN∥平面BEC,
又MN∩DN=N,
故平面DMN∥平面BEC,
又DM?平面DMN,
∴DM∥平面BEC。