优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1,(Ⅰ)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O-AC-B的平
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1,(Ⅰ)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O-AC-B的平
题目简介
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1,(Ⅰ)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O-AC-B的平
题目详情
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1,
(Ⅰ)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算
的值;
(Ⅱ)求二面角O-AC-B的平面角的余弦值.
题型:解答题
难度:中档
来源:湖北省高考真题
答案
解:(Ⅰ)在平面OAB内作ON⊥OA交AB于N,连结NC,
又OA⊥OC,∴OA⊥平面ONC,
∵NC
平面ONC,
∴OA⊥NC,
取Q为AN的中点,则PQ∥NC,
∴PQ⊥OA,在等腰△AOB中,∠AOB=120°,
∴∠OAB=∠OBA=30°,
在Rt△AON中,∠OAN=30°,∴
,
在△ONB中,∠NOB=120°-90°=30°=∠NBO,
∴NB=ON=AQ,
∴
。
(Ⅱ)连结PN,PO,
由OC⊥OA,OC⊥OB知OC⊥平面OAB,
又ON
平面OAB,∴OC⊥ON,
又由ON⊥OA知ON⊥平面AOC,
∴OP是NP在平面AOC内的射影,
在等腰Rt△COA中,P为AC的中点,
∴AC⊥OP,根据三垂线定理,知AC⊥NP,
∴∠OPN为二面角O-AC-B的平面角,
在等腰Rt△COA中,OC=OA=1,∴
,
在Rt△AON中,
,
∴在Rt△PON中,
,
∴
。
上一篇 :
如图,棱柱ABCD-A1B1C1D1的底面A
下一篇 :
如图,已知正三棱柱ABC-A1B1C1的
搜索答案
更多内容推荐
如图,在△ABC中,∠B=90°,SA⊥平面ABC,点A在SB和SC上的射影分别为M、N,求证:MN⊥SC。-高一数学
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC。(1)求证:PC⊥AB;(2)求二面角B-AP-C的大小。-高三数学
在空间中,有如下命题:①互相平行的两条直线在同一平面内的射影必然是互相平行的两条直线;②若平面α内任意一条直线m∥平面β,则平面α∥平面β;③若平面α与平面β的交线为m,平面β-高二数学
如图,梯形ABCD中,AB=BC=1,AD=2,∠CBA=∠BAD=90°,沿对角线AC将△ABC折起,使点B在平面ACD内的射影O恰在AC上,(Ⅰ)求证:AB⊥平面BCD;(Ⅱ)求异面直线BC与AD
已知a,b,l表示三条不同的直线,α,β,γ表示三个不同的平面,有下列四个命题:①若α∩β=a,β∩γ=b且a∥b,则α∥γ;②若a,b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β,则α∥β;
已知m、n是两条不同的直线,α、β是两个不同的平面,且m⊥α,n⊥β,则下列命题中不正确的是[]A.若n∥α,则α⊥βB.若α⊥β,则m⊥nC.若m与n相交,则α与β也相交D.若α与β相交,则m与n也
已知ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,E为BC的中点.(1)求证:DE⊥平面PAE;(2)求直线DP与平面PAE所成的角.-高一数学
如图,ABCD-A1B1C1D1是正四棱柱,(1)求证:BD⊥平面ACC1A1;(2)若二面角C1-BD-C的大小为60°,求异面直线BC1与AC所成角的大小.-高三数学
如图,是半径为a的半圆,AC为直径,点E为的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FB=FD=a,FE=a,(Ⅰ)证明:EB⊥FD;(Ⅱ)已知点Q,R分别为线段FE,FB上的点,
a,b,c是三直线,α是平面,若c⊥a,c⊥b,,且()(填上一个条件即可),则有c⊥α。-高一数学
设有直线m、n和平面α、β。下列四个命题中,正确的是[]A.若m∥α,n∥α,则m∥nB.若mα,nα,m∥β,n∥β,则α∥βC.若α⊥β,mα,则m⊥βD.若α⊥β,m⊥β,mα,则m∥α-高二数
已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1。(I)求证:AC1⊥平面A1BC;(II)求CC1到平面A1AB的距离
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点。(1)求证:AB1⊥面A1BD;(2)求二面角A-A1D-B的大小;(3)求点C到平面A1BD的距离。-高三数学
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,(Ⅰ)证明:CD⊥AE;(Ⅱ)证明:PD⊥平面ABE;(Ⅲ)求二面角A-P
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点。(1)求证:PO⊥平面ABCD;(
如下图,在梯形ABCD中,CD∥AB,AD=DC=BC=AB=a,E是AB的中点,将△ADE沿DE折起,使点A折起到点P的位置,使二面角P-DE-C的大小为120°,(1)求证:DE⊥PC;(2)求直
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,(Ⅰ)求证:PC⊥BC;(Ⅱ)求点A到平面PBC的距离.-高三数学
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,(Ⅰ)证明:CD⊥AE;(Ⅱ)证明:PD⊥平面ABE;(Ⅲ)求二面角A-P
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,(Ⅰ)求证:AB1⊥平面A1BD;(Ⅱ)求二面角A-A1D-B的大小。-高三数学
已知四棱锥P-ABCD的底面ABCD是等腰梯形,AD∥BC,且BC=2AB=2AD=2,侧面PAD为等边三角形,PB=PC=。(1)求证:PC⊥平面PAB;(2)求四棱锥P-ABCD的体积。-高三数学
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分别是AD,PC的中点。(1)证明:PC⊥平面BEF;(2)求平面BEF与平面BAP夹角的大小。-
长方体ABCD-A1B1C1D1的侧棱AA1的长是a,底面ABCD的边长AB=2a,BC=a,E为C1D1的中点。求证:DE⊥平面BCE。-高一数学
如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2。将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示。(Ⅰ)求证:BC⊥平面ACD;(
如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB=90°。(1)求证:AC⊥BM;(2)求二面角M-AB-C的大
如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(
下图分别为三棱锥S-ABC的直观图与三视图,在直观图中SA=SC,M,N分别为AB,SB的中点.(Ⅰ)求证:AC⊥SB;(Ⅱ)求二面角M-NC-B的余弦值。-高三数学
如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC。(1)证明:SE=2EB;(2)求二面角A-DE-C
如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上。(1)证明:AP⊥BC;(2)已知BC=8,PO=4,AO=3,OD=2。求二面角B-AP-C的大小。-
已知a,b,c是直线,α,β是平面,下列命题中正确的是[]A.若a∥α,bα,则a∥bB.若α⊥β,aα,则a⊥βC.若a⊥α,α∥β,则a⊥βD.若a⊥c,b⊥c,则a∥b-高一数学
已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是[]A、若m∥α,n∥α,则m∥nB、若α⊥γ,β⊥γ,则α∥βC、若m∥α,m∥β,则α∥βD、若m⊥α,n⊥α,则m∥n-高一
三棱柱中,∠ABC=90°,BB1⊥底面ABC,D为棱AC的中点,且AB=BC=BB1=1。(1)求二面角A1-BD-C的余弦值;(2)棱CC1上是否存在一点P,使PD⊥平面A1BD;若存在,试确定P
在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,底面ABCD是边长为2的菱形,∠BAD=60°,E是AD的中点,F是PC的中点,(Ⅰ)求证:BE⊥平面PAD;(Ⅱ)求证:EF∥
如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC,(Ⅰ)求证:AM⊥平面EBC;(Ⅱ)求二面角A-EB-C的大小.-高三数学
如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且PD=a,PA=PC=a。(1)求证:PD⊥平面ABCD;(2)求二面角A-PB-D的平面角的大小。-高一数学
如图,在三棱柱ABC-A1B1C1,侧棱垂直底面,∠ACB=90°,AC=BC=CC1=2,(Ⅰ)求证:AB1⊥BC1;(Ⅱ)求二面角C1-AB1-A1的大小.-高三数学
如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,点C在上,且∠CAB=30°,D为AC的中点。(1)证明:AC⊥平面POD;(2)求直线OC和平面PAC所成角的正弦值。-高三数学
在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE,M是AB的中点,(Ⅰ)求证:CM⊥EM;(Ⅱ)求CM与平面CDE所成的角.-高三数学
如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E为DB的中点。(1)证明:AE⊥BC;(2)若点F是线段BC上的动点,设面PFE与面PBE所成的平面角大
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点,(Ⅰ)求证:AC⊥SD;(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小;(Ⅲ)在(Ⅱ)的条件下,侧棱SC
如图,直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°。(Ⅰ)证明:AB⊥A1C;(Ⅱ)求二面角A-A1C-B的大小。-高二数学
如图,PO⊥平面ABCD,点O在AB上,EA∥PO,四边形ABCD为直角梯形,BC⊥AB,BC=CD=BO=PO,EA=AO=CD,(Ⅰ)求证:PE⊥平面PBC;(Ⅱ)直线PE上是否存在点M,使DM∥
如图,在椎体P-ABCD中,ABCD是边长为1的棱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点。(1)证明:AD⊥平面DEF;(2)求二面角P-AD-B的余弦值。-高三
如下图所示,已知矩形ABCD中,AB=10,BC=6,将矩形ABCD沿对角线BD把△ABD折起,使A移到点A1,且在平面BCD上的射影O恰好在CD上。(Ⅰ)求证:BC⊥A1D;(Ⅱ)求证:平面A1BC
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC。(Ⅰ)求证:PC⊥AB;(Ⅱ)求二面角B-AP-C的正弦值。-高一数学
如图,已知直二面角α-PQ-β,A∈PQ,B∈α,C∈β,CA=CB,∠BAP=45°,直线CA和平面α所成的角为30°。(1)证明BC⊥PQ;(2)求二面角B-AC-P的大小。-高三数学
如图,在正方形AS1S2S3中,E、F分别是边S1S2、S2S3的中点,D是EF的中点,沿AE、EF、AF把这个正方形折成一个几何体,使三点S1、S2、S3重合于一点S,下面有5个结论:①AS⊥平面S
一个多面体的三视图及直观图如图所示,M,N分别是A1B,B1C1的中点.(Ⅰ)求证:MN⊥平面A1BC;(Ⅱ)求直线BC1和平面A1BC所成角的大小;(Ⅲ)求二面角A-A1B-C的大小.-高三数学
如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°,(Ⅰ)证明:AA1⊥BD;(Ⅱ)证明:CC1∥平面A1BD。
如图,在三棱锥P-ABC中,PA垂直于平面ABC,AC⊥BC,求证:BC⊥平面PAC。-高一数学
如图,在四棱锥P-ABCD中,底面ABCD是矩形。已知AB=3,AD=2,PA=2,PD=2,∠PAB=60°。(Ⅰ)证明:AD⊥平面PAB;(Ⅱ)求异面直线PC与AD所成的角的余弦值;(Ⅲ)求二面角
返回顶部
题目简介
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1,(Ⅰ)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O-AC-B的平
题目详情
(Ⅰ)设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算
(Ⅱ)求二面角O-AC-B的平面角的余弦值.
答案
又OA⊥OC,∴OA⊥平面ONC,
∵NC
∴OA⊥NC,
取Q为AN的中点,则PQ∥NC,
∴PQ⊥OA,在等腰△AOB中,∠AOB=120°,
∴∠OAB=∠OBA=30°,
在Rt△AON中,∠OAN=30°,∴
在△ONB中,∠NOB=120°-90°=30°=∠NBO,
∴NB=ON=AQ,
∴
由OC⊥OA,OC⊥OB知OC⊥平面OAB,
又ON
又由ON⊥OA知ON⊥平面AOC,
∴OP是NP在平面AOC内的射影,
在等腰Rt△COA中,P为AC的中点,
∴AC⊥OP,根据三垂线定理,知AC⊥NP,
∴∠OPN为二面角O-AC-B的平面角,
在等腰Rt△COA中,OC=OA=1,∴
在Rt△AON中,
∴在Rt△PON中,
∴