如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,(Ⅰ)证明:CD⊥AE;(Ⅱ)证明:PD⊥平面ABE;(Ⅲ)求二面角A-P

题目简介

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,(Ⅰ)证明:CD⊥AE;(Ⅱ)证明:PD⊥平面ABE;(Ⅲ)求二面角A-P

题目详情

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,
(Ⅰ)证明:CD⊥AE;
(Ⅱ)证明:PD⊥平面ABE;
(Ⅲ)求二面角A-PD-C的余弦值。
题型:解答题难度:中档来源:模拟题

答案

(Ⅰ)证明:在四棱锥P-ABCD中,因PA⊥底面ABCD,CD平面ABCD,
故PA⊥CD,
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC,AE平面PAC,
∴AE⊥CD。
(Ⅱ)证明:由PA=AB=BC,∠ABC=60°,可得AC=PA,
∵E是PC的中点,
∴AE⊥PC,
由(Ⅰ)知,AE⊥CD,且PC∩CD=C,
所以AE⊥平面PCD,而PD平面PCD,
∴AE⊥PD,
∵PA⊥底面ABCD,
∴PA⊥AB,
又AD⊥AB,PA∩AD=A,
∴AB⊥面PAD,
∴AB⊥PD,
又AB∩AE=A,
综上得,PD⊥平面ABE。
(Ⅲ)解:由题设PA⊥底面ABCD,PA平面PAD,
则平面PAD⊥平面ACD,交线为AD,
过点C作CF⊥AD,垂足为F,
故CF⊥平面PAD,过点F作FM⊥PD,垂足为M,
连接CM,故CM⊥PD,因此∠CMF是二面角A-PD-C的平面角,
由已知,可得∠CAD=30°,
设AC=a,可得PA=a,


于是,
在Rt△CMF中,
故二面角A-PD-C的余弦值为

更多内容推荐