如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。(1)证明:AE⊥PD;(2)若H为PD上的动点,EH与平面PAD所成最大角的正切

题目简介

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。(1)证明:AE⊥PD;(2)若H为PD上的动点,EH与平面PAD所成最大角的正切

题目详情

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E-AF-C的余弦值。
题型:解答题难度:中档来源:山东省高考真题

答案

解:(1)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形
因为E为BC的中点,
所以AE⊥BC
又BC∥AD,因此AE⊥AD
因为PA⊥平面ABCD,AE平面ABCD,
所以PA⊥AE
而PA平面PAD,AD平面PAD且PA∩AD=A,
所以AE⊥平面PAD
又PD平面PAD,
所以AE⊥PD。
(2)设AB=2,H为PD上任意一点,连接AH,EH
由(1)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角
在Rt△EAH中,AE=
所以当AH最短时,∠EHA最大,
即当AH⊥PD时,∠EHA最大
此时tan∠EHA=
因此AH=
又AD=2,
所以∠ADH=45°,
所以PA=2
因为PA⊥平面ABCD,PA平面PAC,
所以平面PAC⊥平面ABCD
过E作EO⊥AC于O,则EO⊥平面PAC,
过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,
在Rt△AOE中,EO=AE·sin30°=,AO=AE·cos30°=
又F是PC的中点,在Rt△ASO中,SO=AO·sin45°=

在Rt△ESO中,cos∠ESO=
即所求二面角的余弦值为

更多内容推荐