已知数列{an},{bn}满足:a1=3b1=3,a2=6,bn+1=2bn-2n,bn=an-nan-1(n≥2,n∈N*).(I)探究数列{bn2n}是等差数列还是等比数列,并由此求数列{bn}的

题目简介

已知数列{an},{bn}满足:a1=3b1=3,a2=6,bn+1=2bn-2n,bn=an-nan-1(n≥2,n∈N*).(I)探究数列{bn2n}是等差数列还是等比数列,并由此求数列{bn}的

题目详情

已知数列{an},{bn}满足:a1=3b1=3,a2=6,bn+1=2bn-2n,bn=an-nan-1(n≥2,n∈N*).
(I)探究数列{
bn
2n
}
是等差数列还是等比数列,并由此求数列{bn}的通项公式;
(II)求数列{nan}的前n项和Sn
题型:解答题难度:中档来源:安徽模拟

答案

(I)∵bn+1=2bn-2n ,∴bn+1-2bn =-2n ,∴
bn+1
2n+1
bn
2n
=-class="stub"1
2

∴数列{
bn
2n
 }构成以class="stub"1
2
为首项,以-class="stub"1
2
为公差的等差数列,∴
bn
2n
=class="stub"1
2
-class="stub"1
2
 (n-1),
∴bn=2n(1-class="stub"n
2
 ).
(II)∵bn=an-nan-1,∴an-2n=nan-1-n2n-1=n( an-1-2n-1 ),
an-  2n
an-1-2n-1
=n,
an2n
a1-2
=
an2n
an-1-2n-1
an-1-2n-1
an-2-2n-2
an-2-2n-2
an-3-2n-3
a2-22
a1-2
 
=n(n-1)(n-2)×…×3×2,又 a1=3,故 an=n(n-1)(n-2)×…×3×2×1+2n,
nan=n×n(n-1)(n-2)×…×3×2×1+n 2n=(n+1)!-n!+n 2n,
∴sn=(2!-1!)+(3!-2!)+(4!-3!)+…+((n+1)!-n!)+(1×2+2×22+…+n2n )
=(n+1)!-1+( 1×2+2×22+…+n2n ).
令Tn=1×2+2×22+…+n2n,①则 2Tn=1×22+2×23+…+n 2n+1,②
①-②可得,-Tn=2+22+23+…-n 2n+1,∴Tn=(n-1)2n+1+2,
∴sn=(n+1)!+(n-1)2n+1+1.

更多内容推荐