优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表-高三数学
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表-高三数学
题目简介
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表-高三数学
题目详情
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为
立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的r.
题型:解答题
难度:偏难
来源:北京市月考题
答案
解:(1)由体积V=
,解得l=
,
∴y=2πrl×3+4πr2×c=6πr×
+4cπr2=2π·
,
又l≥2r,即
≥2r,解得0<r≤2
∴其定义域为(0,2].
(2)由(1)得,y′=8π(c﹣2)r﹣
,
=
,0<r≤2
由于c>3,所以c﹣2>0
当r3﹣
=0时,则r=
令
=m,(m>0)
所以y′=
①当0<m<2即c>
时,
当r=m时,y′=0
当r∈(0,m)时,y′<0
当r∈(m,2)时,y′>0
所以r=m是函数y的极小值点,也是最小值点.
②当m≥2即3<c≤
时,
当r∈(0,2)时,y′<0,函数单调递减.
所以r=2是函数y的最小值点.
综上所述,当3<c≤
时,建造费用最小时r=2;
当c>
时,建造费用最小时r=
上一篇 :
已知函数f(x)=lnx,,(1)设函数F(x)=2g(x)﹣f
下一篇 :
函数f(x)=x3+ax2+bx+a2,在x=1时有
搜索答案
更多内容推荐
曲线f(x)=cosx+cos(x-π2)(x∈(-π4,7π4))在(x0,f(x0))处的切线的倾斜角为π4,则x0的值为()A.5π4或7π4B.0C.3π4或πD.0或3π2-数学
已知直线y=x+a与曲线y=lnx相切,则a的值为______.-数学
已知函数.(1)求函数的单调区间;(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求实数k的取值范围.-高三数学
把边长为6的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为x,容积为V(x).(1)写出函数V(x)的解析式-高三数学
若函数在区间[1,e]上的最小值为,则实数a的值为[]A.B.C.D.非上述答案-高三数学
已知奇函数f(x)在x>1时,f(x)=,则f(x)在[-2,]上的值域为[]A.[,0]B.[0,]C.[,]D.[,]-高三数学
若f(x)=x2-a(ln-1)(0<x<e)x2+a(lnx-1)(x≥e其中a∈R(1)当a=-2时,求函数y(x)在区间[e,e2]上的最大值;(2)当a>0,时,若x∈[1,+∞),f(x)≥
若lim△x→0f(x0+3△x)-f(x0)△x=1,则f′(x0)等于______.-数学
曲线y=ex+1在点(0,2)处的切线与两条坐标围成的三角形的面积为()A.4B.2C.1D.12-数学
已知函数f(x)=lnx﹣ax(a∈R).(1)当a=2时,求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在[1,2]上最小值.-高二数学
函数y=e2x图象上的点到直线2x-4y-4=0距离的最小值是______.-数学
烟囱向其周围散落烟尘造成环境污染.已知落在地面某处的烟尘浓度与该处到烟囱的距离的平方成反比,而与该烟囱喷出的烟尘量成正比.现有A,B两座烟囱相距20km,其中B烟囱喷出的-数学
已知,函数(其中为自然对数的底数).(1)求函数在区间上的最小值;(2)设,当时,若对任意,存在,使得,求实数的取值范围.-高三数学
已知函数f(x)=lnx,g(x)=12x2+t(t为常数),直线l与函数f(x),g(x)的图象都相切,且l与函数f(x)图象的切点的横坐标为1,则t的值为______.-数学
已知函数f(x)=x3+bx2+cx+d(b≠0)在x=0处的切线方程为2x-y-1=0;(1)求实数c,d的值;(2)若对任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤f(x)-2
请你设计一个包装盒.如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成-高三数学
已知函数f(x)=x3﹣ax2+bx+c的图象为曲线C.(1)若曲线C上存在点P,使曲线C在P点处的切线与x轴平行,求a,b的关系;(2)若函数f(x)可以在x=﹣1和x=3时取得极值,求此时a,b的
已知点P在曲线y=x3-3x上移动,在点P处的切线倾斜角为α,则α的取值范围是()A.[0,π2]B.[23π,π]C.[0,π2)∪[56π,π)D.[0,π2]∪[23π,π)-数学
已知函数f(x)=lnx,g(x)=x2﹣bx(b为常数).(1)函数f(x)的图象在点(1,f(1))处的切线与g(x)的图象相切,求实数b的值;(2)设h(x)=f(x)+g(x),若函数h(x)
函数f(x)=x3+ax2+bx+c,曲线y=f(x)上以点P(1,f(1))为切点的切线方程为y=3x+1.(1)若y=f(x)在x=-2时有极值,求f(x)的表达式;(2)在(1)的条件下,求y=
已知函数F(x)=13ax3-bx2+cx+d(a≠0)的图象过原点,f(x)=F′(x),g(x)=f′(x),f(1)=0,函数y=f(x)与y=g(x)的图象交于不同的两点A、B.(Ⅰ)若y=F
已知,函数(其中e为自然对数的底数).(Ⅰ)求函数f(x)在区间上的最小值;(Ⅱ)设数列{an}的通项,Sn是前n项和,证明:.-高三数学
已知函数.(1)求函数y=f(x)的最小值;(2)证明:对任意恒成立;(3)对于函数f(x)图象上的不同两点,如果在函数f(x)图象上存在点(其中)使得点M处的切线l∥AB,则称直线AB存在“伴侣-高
已知函数,其中.(1)是否存在实数,使得在处取极值?证明你的结论;(2)若在[-1,]上是增函数,求实数的取值范围.-高三数学
已知函数f(x)=-x(1)求函数f(x)的单调区间;(2)设m>0,求f(x)在[m,m]上的最大值;(3)试证明:对任意,不等式恒成立.-高三数学
已知函数满足f(0)=0,f′(1)=0,且f(x)在R上单调递增.(1)求f(x)的解析式;(2)若g(x)=f′(x)﹣m·x在区间[m,m+2]上的最小值为﹣5,求实数m的值.-高三数学
直线l与函数y=sinx(x∈[0,π])的图象相切于点A,且l∥OP,其中O为坐标原点,P为图象的极大值点,则点A的纵坐标是()A.2πB.12C.π2-42D.π2-4π-数学
f(x)=2x3-6x2+a在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是()A.-5B.-11C.-29D.-37-数学
已知函数f(x)=﹣x3+3x2+9x+a(a为常数),在区间[﹣2,2]上有最大值20,那么此函数在区间[﹣2,2]上的最小值为().-高三数学
(选作)函数f(x)=x3-ax2+x在x=1处的切线与直线y=2x平行,则a的值为()A.3B.2C.1D.0-数学
已知函数f(x)=12x-14sinx-34cosx的图象在点A(x0,y0)处的切线斜率为1,则tanx0=______.-数学
曲线y=x3+x-2在P点处的切线平行于直线y=4x-1,则此切线方程为______.-数学
曲线y=x3-6x2-x+6的斜率最小的切线方程为______.-数学
曲线f(x)=lnxx在点P(1,0)处的切线方程是______.-数学
已知函数.(1)求函数f(x)在(0,2)上的最小值;(2)设g(x)=﹣x2+2mx﹣4,若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,求实数m的取值范围.-高三数
设函数f(x)=(1+x)2﹣2ln(1+x).(1)求f(x)的单调区间;(2)若当时,不等式f(x)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)=x2+x+a在区间[0,2]上恰好
已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.(1)求实数a的值;(2)若k∈Z,且对任意x>1恒成立,求k的最大值;(3)当n>m≥4时,证明(mnn)m>
点P在曲线y=x3-x+2上运动,则过P点的曲线的切线倾斜角的范围是()A.[0,π)B.(0,π2)∪[3π4C.[0,π2)∪(π2D.[0,π2)∪[3π4-数学
已知函数f(x)=lnx+ax.(I)若对一切x>0,f(x)≤1恒成立,求a的取值范围;(II)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x)2)(x1<x2),记直线AB
函数f(x)=x3-6x2的定义域为[-2,t],设f(-2)=m,f(t)=n,f′(x)是f(x)的导数.(Ⅰ)求证:n≥m;(Ⅱ)确定t的范围使函数f(x)在[-2,t]上是单调函数;(Ⅲ)求证
设函数f(x)=ex-3x,则()A.x=3e为f(x)的极大值点B.x=3e为f(x)的极小值点C.x=ln3为f(x)的极大值点D.x=ln3为f(x)的极小值点-数学
设函数(1)若函数f(x)在其定义域内是减函数,求a的取值范围;(2)函数f(x)是否有最小值?若有最小值,指出其取得最小值时x的值,并证明你的结论.-高三数学
已知曲线y=exx,则过原点O的曲线的切线斜率为______.-数学
附加题已知函数f(x)=ln(ax+1)+,其中a>0.(1)若f(x)在x=1处取得极值,求a的值;(2)若f(x)的最小值为1,求a的取值范围.-高三数学
己知f(x)=Inx﹣ax2﹣bx.(Ⅰ)若a=﹣1,函数f(x)在其定义域内是增函数,求b的取值范围;(Ⅱ)当a=1,b=﹣1时,证明函数f(x)只有一个零点;(Ⅲ)f(x)的图象与x轴交于A(x1
已知函数f(x)的定义域为[﹣1,5],部分对应值如表:f(x)的导函数y=f'(x)的图象如图所示:则f(x)的单调递增区间是().;f(x)的最大值是()-高三数学
已知方程x2-8x+6lnx-m=0有三个不同的实数解,则实数m范围为______.-数学
设函数f(x)=ex+sinx,g(x)=ax,F(x)=f(x)﹣g(x).(1)若x=0是F(x)的极值点,求实数a的值;(2)若x>0时,函数y=F(x)的图象恒在y=F(﹣x)的图象上方,求实
已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值(1)求函数f(x)的解析式;(2)求证:对于区间[﹣1,1]上任意两个自变量的值x1,x2,都有|f(x1)﹣f(x2)|≤4;(3)若过点
曲线y=x+2x在点(-1,-1)处切线的斜率()A.2B.3C.-2D.-3-数学
返回顶部
题目简介
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表-高三数学
题目详情
(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的r.
答案
∴y=2πrl×3+4πr2×c=6πr×
又l≥2r,即
∴其定义域为(0,2].
(2)由(1)得,y′=8π(c﹣2)r﹣
=
由于c>3,所以c﹣2>0
当r3﹣
令
所以y′=
①当0<m<2即c>
当r=m时,y′=0
当r∈(0,m)时,y′<0
当r∈(m,2)时,y′>0
所以r=m是函数y的极小值点,也是最小值点.
②当m≥2即3<c≤
当r∈(0,2)时,y′<0,函数单调递减.
所以r=2是函数y的最小值点.
综上所述,当3<c≤
当c>