若奇函数f(x)(x∈R)满足f(3)=1,f(x+3)=f(x)+f(3),则f(=______.-数学

题目简介

若奇函数f(x)(x∈R)满足f(3)=1,f(x+3)=f(x)+f(3),则f(=______.-数学

题目详情

若奇函数f(x)(x∈R)满足f(3)=1,f(x+3)=f(x)+f(3),则f(=______.
题型:填空题难度:中档来源:不详

答案

∵f(x+3)=f(x)+f(3),
令x=-class="stub"3
2
,则f(-class="stub"3
2
+3)=f(-class="stub"3
2
)+f(3),
即f( class="stub"3
2
)=f(-class="stub"3
2
)+f(3),
∴f( class="stub"3
2
)=class="stub"1
2

故答案为:class="stub"1
2

更多内容推荐