数列{an}是公差为正数的等差数列,a2、a5且是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-12bn(n∈N*),(1)求数列{an}、{bn}的通项公式;(2)记c

题目简介

数列{an}是公差为正数的等差数列,a2、a5且是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-12bn(n∈N*),(1)求数列{an}、{bn}的通项公式;(2)记c

题目详情

数列{an}是公差为正数的等差数列,a2、a5且是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-
1
2
bn(n∈N*)

(1)求数列{an}、{bn}的通项公式;
(2)记cn=an•bn,求数列{cn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(1)∵等差数列{an}的公差d>0,a2、a5且是方程x2-12x+27=0的两根,
∴a2=3,a5=9.
∴d=class="stub"9-3
5-2
=2,
∴an=a2+(n-2)d=3+2(n-2)=2n-1;
又数列{bn}中,Tn=1-class="stub"1
2
bn,①
∴Tn+1=1-class="stub"1
2
bn+1,②
②-①得:
bn+1
bn
=class="stub"1
3
,又T1=1-class="stub"1
2
b1=b1,
∴b1=class="stub"2
3

∴数列{bn}是以class="stub"2
3
为首项,class="stub"1
3
为公比的等比数列,
∴bn=class="stub"2
3
(class="stub"1
3
)
n-1

综上所述,an=2n-1,bn=class="stub"2
3
(class="stub"1
3
)
n-1

(2)∵cn=an•bn=(2n-1)•class="stub"2
3
(class="stub"1
3
)
n-1

∴Sn=a1b1+a2b2+…+anbn
=1×class="stub"2
3
+3×class="stub"2
3
×class="stub"1
3
+…+(2n-1)×class="stub"2
3
×(class="stub"1
3
)
n-1
,③
class="stub"1
3
Sn=class="stub"2
3
×class="stub"1
3
+3×class="stub"2
3
×(class="stub"1
3
)
2
+…+(2n-3)×class="stub"2
3
×(class="stub"1
3
)
n-1
+(2n-1)×class="stub"2
3
×(class="stub"1
3
)
n
,④
∴③-④得:class="stub"2
3
Sn=class="stub"2
3
+class="stub"4
3
[class="stub"1
3
+(class="stub"1
3
)
2
+(class="stub"1
3
)
3
+…+(class="stub"1
3
)
n-1
]-(2n-1)×class="stub"2
3
×(class="stub"1
3
)
n

Sn=1+2[class="stub"1
3
+(class="stub"1
3
)
2
+(class="stub"1
3
)
3
+…+(class="stub"1
3
)
n-1
]-(2n-1)×(class="stub"1
3
)
n

=1+2×
class="stub"1
3
[1-(class="stub"1
3
)
n-1
]
1-class="stub"1
3
-(2n-1)×(class="stub"1
3
)
n

=2-class="stub"2n+2
3
×(class="stub"1
3
)
n-1

=2-(2n+2)×(class="stub"1
3
)
n

更多内容推荐