如果f(x)的图象关于y轴对称,而且在区间[0,+∞)为增函数,又f(-2)=0,那么(x-1)f(x)<0的解集为______.-高一数学

题目简介

如果f(x)的图象关于y轴对称,而且在区间[0,+∞)为增函数,又f(-2)=0,那么(x-1)f(x)<0的解集为______.-高一数学

题目详情

如果f(x)的图象关于y轴对称,而且在区间[0,+∞)为增函数,又f(-2)=0,那么(x-1)f(x)<0的解集为______.
题型:填空题难度:中档来源:不详

答案

∵f(x)的图象关于y轴对称,
∴函数f(x)是偶函数,可得f(-2)=f(2)=0,
∵偶函数f(x)在区间[0,+∞)为增函数,
∴f(x)在区间(-∞,0]为减函数,
不等式(x-1)f(x)<0等价于
x-1>0
f(x)<0
x-1<0
f(x)>0

当x-1>0时,不等式f(x)<0成立,即f(x)<f(2),结合单调性可得0<x<2;
当x-1<0时,不等式f(x)>0成立,即f(x)>f(-2),结合单调性可得x<-2.
综上所述,可得(x-1)f(x)<0的解集为{x|0<x<2或x<-2}
故答案为:{x|0<x<2或x<-2}

更多内容推荐