设f(α)=2sin(π+α)cos(π-α)-cos(π+α)1+sin2α+sin(π-α)-cos2(π-α),(1)若α=-176π,求f(α)的值;(2)若α是锐角,且sin(α-32π)=

题目简介

设f(α)=2sin(π+α)cos(π-α)-cos(π+α)1+sin2α+sin(π-α)-cos2(π-α),(1)若α=-176π,求f(α)的值;(2)若α是锐角,且sin(α-32π)=

题目详情

f(α)=
2sin(π+α)cos(π-α)-cos(π+α)
1+sin2α+sin(π-α)-cos2(π-α)

(1)若α=-
17
6
π
,求f(α)的值;
(2)若α是锐角,且sin(α-
3
2
π)=
3
5
,求f(α)的值.
题型:解答题难度:中档来源:不详

答案

因为f(α)=
2sin(π+α)cos(π-α)-cos(π+α)
1+sin2α+sin(π-α)-cos2(π-α)

=
(-2sinα)(-cosα)-(-cosα)
1+sin2α+sinα-cos2α
=class="stub"2sinαcosα+cosα
2sin2α+sinα
=
(2sinα+1)cosα
(2sinα+1)sinα
=class="stub"1
tanα

(1)若α=-class="stub"17
6
π

f(-class="stub"17
6
π)=class="stub"1
tan(-class="stub"17
6
π)
=class="stub"1
tan(-3π+class="stub"π
6
)
=class="stub"1
tanclass="stub"π
6
=class="stub"1
3
3
=
3


(2)若α是锐角,且sin(α-class="stub"3
2
π)=class="stub"3
5

cosα=class="stub"3
5

sinα=
1-cos2α
=class="stub"4
5

tanα=class="stub"sinα
cosα
=class="stub"4
3

f(α)=class="stub"3
4

更多内容推荐