设已知f(x)=2cos2x+3sin2x+a,(a∈R)(1)若x∈R,求f(x)的单调增区间;(2)若x∈[0,π2]时,f(x)的最大值为4,求a的值;(3)在(2)的条件下,求满足f(x)=1

题目简介

设已知f(x)=2cos2x+3sin2x+a,(a∈R)(1)若x∈R,求f(x)的单调增区间;(2)若x∈[0,π2]时,f(x)的最大值为4,求a的值;(3)在(2)的条件下,求满足f(x)=1

题目详情

设已知f(x)=2cos2x+
3
sin2x+a,(a∈R)

(1)若x∈R,求f(x)的单调增区间;
(2)若x∈[0,
π
2
]
时,f(x)的最大值为4,求a的值;
(3)在(2)的条件下,求满足f(x)=1且x∈[-π,π]的x的集合.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=2cos2x+
3
sin2x+a
=2sin(2x+class="stub"π
6
)+a+1

-class="stub"π
2
+2kπ≤2x+class="stub"π
6
≤class="stub"π
2
+2kπ,k∈z
,解得:-class="stub"π
2
+2kπ≤2x+class="stub"π
6
≤class="stub"π
2
+2kπ,k∈z

∴f(x)的单调增区间为x∈[-class="stub"π
3
+kπ,class="stub"π
6
+kπ]
,k∈z,
(2)∵x∈[0,class="stub"π
2
]
,∴当x=class="stub"π
6
时,sin(2x+class="stub"π
6
)
=1,即f(x)的最大值为3+a=4,∴a=1
(3)∵2sin(2x+class="stub"π
6
)+2
=1,∴sin(2x+class="stub"π
6
)
=-class="stub"1
2
,∴2x+class="stub"π
6
=-class="stub"π
6
+2kπ或-class="stub"5π
6
+2kπ,k∈z

∵x∈[-π,π],∴x的集合为{-class="stub"π
6
,class="stub"5π
6
,-class="stub"π
2
,class="stub"π
2
}

更多内容推荐