设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若∀x∈[-2-2,2+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范是______.-数学

题目简介

设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若∀x∈[-2-2,2+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范是______.-数学

题目详情

设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若∀x∈[-2-
2
,2+
2
]
,不等式f(x+t)≥2f(x)恒成立,则实数t的取值范是______.
题型:填空题难度:中档来源:不详

答案

当x≥0时,f(x)=x2
∵函数是奇函数
∴当x<0时,f(x)=-x2
∴f(x)=
x2  x≥0
-x2 x<0

∴f(x)在R上是单调递增函数,
且满足2f(x)=f(
2
x),
∵不等式f(x+t)≥2f(x)=f(
2
x)在[-2-
2
,2+
2
]
上恒成立,
∴x+t≥
2
x在[-2-
2
,2+
2
]
恒成立,
即:x≤(1+
2
)t在x∈[-2-
2
,2+
2
]
恒成立,
∴2+
2
≤(1+
2
)t
解得:t≥
2

故答案为:[2,+∞).

更多内容推荐