已知定义域为R的函数f(x)=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.-高一数学

题目简介

已知定义域为R的函数f(x)=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.-高一数学

题目详情

已知定义域为R的函数f(x)=是奇函数.
(Ⅰ)求b的值;
(Ⅱ)判断函数f(x)的单调性;
(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
题型:解答题难度:偏难来源:安徽省期中题

答案

(Ⅰ)因为f(x)是奇函数,所以f(0)=0,

(Ⅱ)由(Ⅰ)知
设x1<x2则f(x1)﹣f(x2)==
因为函数y=2x在R上是增函数且x1<x2
∴f(x1)﹣f(x2)=>0
即f(x1)>f(x2)
∴f(x)在(﹣∞,+∞)上为减函数
(III)∴f(x)在(﹣∞,+∞)上为减函数,又因为f(x)是奇函数,
所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),
因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.
即对一切t∈R有:3t2﹣2t﹣k>0,
从而判别式
所以k的取值范围是k<﹣

更多内容推荐