函数f(x)=6cos2+sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.(1)求ω的值及函数f(x)的值域;(2)若f(x0)=

题目简介

函数f(x)=6cos2+sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.(1)求ω的值及函数f(x)的值域;(2)若f(x0)=

题目详情

函数f(x)=6cos2sin ωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.

(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=,且x0,求f(x0+1)的值.
题型:解答题难度:中档来源:不详

答案

(1)ω=, [-2,2]
(2)
(1)由已知可得,
f(x)=3cos ωx+sin ωx=2sin
又正三角形ABC的高为2,从而BC=4,
所以函数f(x)的周期T=4×2=8,即=8,ω=.
函数f(x)的值域为[-2,2].
(2)因为f(x0)=,由(1)有
f(x0)=2sin
即sin
由x0∈,知
所以cos.
故f(x0+1)=2sin
=2sin
=2
=2×.

更多内容推荐