已知等比数列{an}的前n项和为Sn=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}满足an=4(5+k)anbn,Tn为数列{bn}的前n项和,试比较3-16T

题目简介

已知等比数列{an}的前n项和为Sn=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}满足an=4(5+k)anbn,Tn为数列{bn}的前n项和,试比较3-16T

题目详情

已知等比数列{an}的前n项和为Sn=2•3n+k(k∈R,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足an=4(5+k)anbn,Tn为数列{bn}的前n项和,试比较3-16Tn与 4(n+1)bn+1的大小,并证明你的结论.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由Sn=2-3n+k可得
n≥2 时,an=Sn-Sn-1=4×3n-1
∵{an}是等比数列
∴a1=S1=6+k=4∴k=-2,an=4×3n-1
(Ⅱ)由an=4×(5+k)anbn和an=4×3n-1得bn=class="stub"n-1
4•3n-1
(6分)
Tn=b1+b2+…+bn
=class="stub"1
4•3
+class="stub"2
4•32
+…+class="stub"n-2
4•3n-2
+class="stub"n-1
4•3n-1

3Tn=class="stub"1
4
+class="stub"2
4•3
+class="stub"3
4•32
+…+class="stub"n-1
4•3n-2

两式相减可得,2Tn=class="stub"1
4
+class="stub"1
4•3
+class="stub"1
4•32
+…+class="stub"1
4•3n-2
-class="stub"n-1
4•3n-1

Tn=class="stub"1
8
+class="stub"1
8•3
+class="stub"1
8•32
+…+class="stub"1
8•3n-2
-class="stub"n-1
8•3n-1

=class="stub"3
16
-class="stub"2n+1
16•3n-1

4(n+1)bn+1-(3-16Tn)=
n(n+1)
3n
-class="stub"2n+1
3n-1
=
n(n+1)-3(2n+1)
3n

而n(n+1)-3(2n+1)=n2-5n-3
n>
5+
37
2
n<
5-
37
2
<0时,有n(n+1)>3(2n+1)
所以当n>5时有3-16Tn<4(n+1)bn+1
那么同理可得:当
5-
37
2
<n<
5+
37
2

时有n(n+1)<3(2n+1),所以当1≤n≤5时有3-16Tn>4(n+1)bn+1
综上:当n>5时有3-16Tn<4(n+1)bn+1;
当1≤n≤5时有3-16Tn>4(n+1)bn+1

更多内容推荐