如图,设半径为3的半圆⊙O,直径为AB,C、D为半圆上的两点,P点是AB上一动点,若的度数为,的度数为,则PC+PD的最小值是_____。-九年级数学

题目简介

如图,设半径为3的半圆⊙O,直径为AB,C、D为半圆上的两点,P点是AB上一动点,若的度数为,的度数为,则PC+PD的最小值是_____。-九年级数学

题目详情

如图,设半径为3的半圆⊙O,直径为AB,C、D为半圆上的两点,P点是AB上一动点,若 的度数为的度数为,则 PC+PD的最小值是_____     。
 
题型:填空题难度:中档来源:不详

答案



解:设点D关于AB的对称点为E,连接CE交AB于P,则此时PC+PD的值最小,且PC+PD=PC+PE=CE.连接OC、OE;
的度数为的度数为
∴弧CD的度数为48°;
∴弧CBE的度数为120°,即∠COE=120°;
过O作OF⊥CE于F,则∠COF=60°;
Rt△OCF中,OC=1,∠COF=60°;因此CF=
∴CE=2CF=
即PC+PD的最小值为
点评:此类题首先正确找到点P的位置,然后根据弧的度数发现特殊三角形,根据垂径定理以及勾股定理进行计算。要求PC+PD的最小值,应先确定点P的位置.作点D关于AB的对称点E,连接CE交AB于点P,则P即是所求作的点,且PC+PD=CE.
根据作法知弧CE的度数是120°,即∠COE=120°,作OF⊥CE于F;
在Rt△OCF中,∠OCF=30°,OC=1,即可求出CF和CE的长,也就求出了PC+PD的最小值。

更多内容推荐