已知函数f(x)=πcos(x4+π3),如果存在实数x1、x2,使得对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是()A.8πB.4πC.2πD.π-数学

题目简介

已知函数f(x)=πcos(x4+π3),如果存在实数x1、x2,使得对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是()A.8πB.4πC.2πD.π-数学

题目详情

已知函数f(x)=πcos(
x
4
+
π
3
),如果存在实数x1、x2,使得对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是(  )
A.8πB.4πC.2πD.π
题型:单选题难度:中档来源:不详

答案

∵函数表达式为f(x)=πcos(class="stub"x
4
+class="stub"π
3
),
∴函数的周期T=class="stub"2π
class="stub"1
4
=8π
∵对任意实数x,都有f(x1)≤f(x)≤f(x2),
∴f(x1)是函数的最小值;f(x2)是函数的最大值
由此可得:|x1-x2|的最小值为class="stub"T
2
=4π
故选:B

更多内容推荐