奇函数f(x)满足对任意x∈R都有f(4+x)+f(-x)=0,且f(1)=9则f(2011)+f(2012)+f(2013)的值为()A.6B.7C.8D.0-数学

题目简介

奇函数f(x)满足对任意x∈R都有f(4+x)+f(-x)=0,且f(1)=9则f(2011)+f(2012)+f(2013)的值为()A.6B.7C.8D.0-数学

题目详情

奇函数f(x)满足对任意x∈R都有f(4+x)+f(-x)=0,且f(1)=9则f(2011)+f(2012)+f(2013)的值为(  )
A.6B.7C.8D.0
题型:单选题难度:偏易来源:不详

答案

因为f(x)为奇函数,所以由f(4+x)+f(-x)=0,得f(4+x)=-f(-x)=f(x),即函数的周期是4.
所以f(2011)=f(503×4-1)=f(-1)=-f(1),f(2012)=f(503×4)=f(0),f(2013)=f(503×4+1)=f(1),
所以f(2011)+f(2012)+f(2013)=-f(1)+f(0)+f(1)=f(0),
因为f(x)为奇函数,所以f(0)=0,
所以f(2011)+f(2012)+f(2013)=f(0)=0.
故选D.

更多内容推荐