设f(x)=sinπx,(x<0)f(x-1)+1(x≥0),g(x)=cosπx,(x<12)g(x-1)+1(x≥12),则f(13)+g(56)=______.-数学

题目简介

设f(x)=sinπx,(x<0)f(x-1)+1(x≥0),g(x)=cosπx,(x<12)g(x-1)+1(x≥12),则f(13)+g(56)=______.-数学

题目详情

f(x)=
sinπx,(x<0)
f(x-1)+1(x≥0)
g(x)=
cosπx,(x<
1
2
)
g(x-1)+1(x≥
1
2
)
,则f(
1
3
)+g(
5
6
)
=______.
题型:填空题难度:中档来源:不详

答案

因为 class="stub"1
3
>0,class="stub"5
6
class="stub"1
2

所以:f(class="stub"1
3
)=f(class="stub"1
3
-1)+1=f(-class="stub"2
3
)+1=sin(-class="stub"2π
3
)+1=1-
3
2

g(class="stub"5
6
)=g(class="stub"5
6
-1)+1=g(-class="stub"1
6
)+1=cos(-class="stub"π
6
)+1=
3
2
+1.
∴f(class="stub"1
3
)+g(class="stub"5
6
)=2.
故答案为2.

更多内容推荐