如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,下面四个函数:①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)

题目简介

如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,下面四个函数:①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)

题目详情

如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,下面四个函数:①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
x
x2+x+1

其中属于有界泛函数的是(  )
A.①②B.①③C.③④D.②④
题型:单选题难度:偏易来源:宝鸡模拟

答案

函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,
∴①取x=0,则|f(x)|=1,|x|=0,故不存在常数M,使得不等式|f(x)|≤M|x|成立,因此①不是有界泛函数;
②若f(x)=x2是有界泛函数,则x2≤M|x|,取x=M+1,则有(M+1)2>M(M+1),故与假设矛盾,因此②不是有界泛函数;
③f(x)=(sinx+cosx)x≤
2
|x|
,故③是有界泛函数;
f(x)=class="stub"x
x2+x+1
class="stub"4
3
|x|
,故④是有界泛函数;
故选C.

更多内容推荐