已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立(1)求x0的值;(2)若f(x0)=1,且对任意正整数

题目简介

已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立(1)求x0的值;(2)若f(x0)=1,且对任意正整数

题目详情

已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立
(1)求x0的值;
(2)若f(x0)=1,且对任意正整数n,有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,求Sn和Tn
(3)若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
对任意不小于2的正整数n都成立,求x的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)令x1=x2=0,f(0)=f(x0)+2f(0),f(x0)=-f(0)
令x1=1,x2=0,f(x0)=f(x0)+f(1)+f(0),f(1)=-f(0),∴f(x0)=f(1)
∵f(x)单调,∴x0=1
(2)f(1)=1,令x1=n,x2=1,f(n+1)=f(n)+f(1)+f(1)=f(n)+2
∴f(n+1)-f(n)=2(n∈N*),∴{f(n)}是以1为首项,2为公差的等差数列,∴f(n)=2n-1(n∈N*)
an=class="stub"1
2n-1
Sn=a1a2+a2a3+…+anan+1
=class="stub"1
1×3
+class="stub"1
3×5
+…+class="stub"1
(2n-1)(2n+1)
=class="stub"1
2
[1-class="stub"1
3
+class="stub"1
3
-class="stub"1
5
+…+class="stub"1
2n-1
-class="stub"1
2n+1
]
=class="stub"n
2n+1

∵f(1)=f(class="stub"1
2
+class="stub"1
2
)=f(class="stub"1
2
)+f(class="stub"1
2
)+f(1)
∴f(class="stub"1
2
)=0,b1=f(class="stub"1
2
)+1

f(class="stub"1
2^
)=f(class="stub"1
2n-1
+class="stub"1
2n-1
)=f(class="stub"1
2n-1
)+f(class="stub"1
2n-1
)+f(1)=2f(class="stub"1
2n+1
)+1

2bn+1=2f(class="stub"1
2n+1
)+2=f(class="stub"1
2n
)+1=bn

bn=(class="stub"1
2
)n-1
Tn=(class="stub"1
2
)0(class="stub"1
2
)1+(class="stub"1
2
)1(class="stub"1
2
)2+…+(class="stub"1
2
)n-1(class="stub"1
2
)n
=class="stub"1
2
+(class="stub"1
2
)3+…+(class="stub"1
2
)2n-1
=
class="stub"1
2
[1-(class="stub"1
4
)
n
]
1-class="stub"1
4
=class="stub"2
3
[1-(class="stub"1
4
)n]

(3)令F(n)=an+1+an+2+…+a2nF(n+1)-F(n)=a2n+1+a2n+2-an+1=class="stub"1
4n+1
+class="stub"1
4n+3
-class="stub"1
2n+1
>0

∴n≥2,n∈N*时,F(n)>F(n-1)>…>F(2)=class="stub"12
35

class="stub"12
35
>class="stub"4
35
[logclass="stub"1
2
(x+1)-logclass="stub"1
2
(9x2-1)+1]

logclass="stub"1
2
(x+1)-logclass="stub"1
2
(9x2-1)<2
x+1>0
9x2-1>0
class="stub"x+1
9x2-1
>class="stub"1
4
解得-class="stub"5
9
<x<-class="stub"1
3
或class="stub"1
3
<x<1

更多内容推荐