设函数f(x)的定义域为R,且f(x+2)=f(x+1)-f(x),若f(4)<-1,f(2011)=a+3a-3,则a的取值范围是()A.(-∞,3)B.(0,3)C.(3,+∞)D.(-∞,0)∪

题目简介

设函数f(x)的定义域为R,且f(x+2)=f(x+1)-f(x),若f(4)<-1,f(2011)=a+3a-3,则a的取值范围是()A.(-∞,3)B.(0,3)C.(3,+∞)D.(-∞,0)∪

题目详情

设函数f(x)的定义域为R,且f(x+2)=f(x+1)-f(x),若f(4)<-1,f(2011)=
a+3
a-3
,则a的取值范围是(  )
A.(-∞,3)B.(0,3)C.(3,+∞)D.(-∞,0)∪(3,+∞)
题型:单选题难度:偏易来源:不详

答案

∵f(x+2)=f(x+1)-f(x),①
∴f(x+3)=f(x+2)-f(x+1)②
将①+②得f(x+3)=-f(x)
∴f(x+6)=f(x)
∴f(2011)=f(7+334×6)=f(7)=f(4+3)=-f(4)
∵f(4)<-1
f(2011)=class="stub"a+3
a-3
=-f(4)>1
解得a>3
故选C.

更多内容推荐