设数列{an}满足:a1=,1,a2=53,an+2=53an+1+13an,(n=1,2,…)(1)令bn=an+1-an,(n=1,2…)求数列{bn}的通项公式;(2)求数列{nan}的前n项和

题目简介

设数列{an}满足:a1=,1,a2=53,an+2=53an+1+13an,(n=1,2,…)(1)令bn=an+1-an,(n=1,2…)求数列{bn}的通项公式;(2)求数列{nan}的前n项和

题目详情

设数列{an}满足:a1=,1,a2=
5
3
an+2=
5
3
an+1+
1
3
an,(n=1,2,…)

(1)令bn=an+1-an,(n=1,2…)求数列{bn}的通项公式;
(2)求数列{nan}的前n项和Sn
题型:解答题难度:中档来源:重庆

答案

(1)∵bn+1=an+2-an+1=class="stub"5
3
an+1-class="stub"2
3
anan+1

=class="stub"2
3
(an+1-an)=class="stub"2
3
bn

∴{bn}是以公比为class="stub"2
3
的等比数列,且b1=a2-a1=class="stub"2
3

∴bn=(class="stub"2
3
)
n

(2)由bn=an+1an =(class="stub"2
3
)
n

an+1-a1=(an+1-an)+(an-an-1)+…+(a2-a1)
=(class="stub"2
3
)
n
+(class="stub"2
3
)
n-1
+…+ (class="stub"2
3
)
2
+class="stub"2
3
=2[1-(class="stub"2
3
)
n
 ]

注意到a1=1,可得an=3-
2n
3n-1

记数列{
n2n-1
3n-1
}的前n项和为Tn,则
Tn=1+2•class="stub"2
3
+…+n•(class="stub"2
3
)
n-1

class="stub"2
3
Tn=class="stub"2
3
+2•(class="stub"2
3
)
2
+…+n•(class="stub"2
3
)
n

两式相减得
class="stub"1
3
Tn=1+class="stub"2
3
+(class="stub"2
3
)
2
+ …+(class="stub"2
3
)
n-1
-n•(class="stub"2
3
)
 
n
=3[1-(class="stub"2
3
)
n
]-n(class="stub"2
3
)
n

Tn=9[1-(class="stub"2
3
)
n
]-3n(class="stub"2
3
)
n
=9-
(3+n)2n
3n-1

从而Sn=a1+2a2+…+nan=3(1+2+3+…+n)-2Tn
=class="stub"3
2
n(n+1)+
(n+3)2n+1
3n-1
-18

更多内容推荐