设f(x)是定义在R上的奇函数,且对任意a,b,当a+b≠0,都有f(a)+f(b)a+b>0(1).若a>b,试比较f(a)与f(b)的大小;(2).若f(k•3x)+f(3x-9x-2)<0对x∈

题目简介

设f(x)是定义在R上的奇函数,且对任意a,b,当a+b≠0,都有f(a)+f(b)a+b>0(1).若a>b,试比较f(a)与f(b)的大小;(2).若f(k•3x)+f(3x-9x-2)<0对x∈

题目详情

设f(x)是定义在R上的奇函数,且对任意a,b,当a+b≠0,都有
f(a)+f(b)
a+b
>0
(1).若a>b,试比较f(a)与f(b)的大小;
(2).若f(k•3x)+f(3x-9x-2)<0对x∈[-1,1]恒成立,求实数k的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)∵对任意a,b,当a+b≠0,都有
f(a)+f(b)
a+b
>0
f(a)+f(-b)
a-b
>0,
∵a>b,
∴a-b>0,
∴f(a)+f(-b)>0,
∵f(x)是定义在R上的奇函数,
∴f(-b)=-f(b),
∴f(a)-f(b)>0,
∴f(a)>f(b)
(2)由(1)知f(x)在R上是单调递增函数,
又f(k•3x)+f(3x-9x-2)<0,
得f(k•3x)<-f(3x-9x-2)=f(9x-3x+2),
故k•3x<9x-3x+2,
∴k<3x+class="stub"2
3x
-1

令t=3x,
∵x∈[-1,1]恒成立,
∴t=3x∈[class="stub"1
3
,3]

∴k<t+class="stub"2
t
-1

而t+class="stub"2
t
≥2
2

当且仅当t=class="stub"2
t
,t=
2
时,取等号,
即k<2
2
-1.

更多内容推荐