已知函数f(x)=logax(a>0)且a≠1),若数列2,f(a1,f(a2,…f(an),2n+4,…(n∈N*),成等差数列.(1)求数列{an}的通项公式;(2)当a=2时,数列{bn}满足b

题目简介

已知函数f(x)=logax(a>0)且a≠1),若数列2,f(a1,f(a2,…f(an),2n+4,…(n∈N*),成等差数列.(1)求数列{an}的通项公式;(2)当a=2时,数列{bn}满足b

题目详情

已知函数f(x)=logax(a>0)且a≠1),若数列2,f(a1,f(a2,…f(an),2n+4,…(n∈N*),成等差数列.
(1)求数列{an}的通项公式;
(2)当a=2时,数列{bn}满足b1=4,bn=4bn-1+an-1,求数列{bn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(1)设等差数列2,f(a1),f(a2),…,f(an),2n+4(n∈N*)的公差为d,
∴2n+4=2+(n+2-1)d,∴d=2,
∴f(an)=2+(n+1-1)•2=2n+2,
an=a2n+2,(5分)
(2)∵bn=4bn-1+an-1,∴bn=4bn-1+4n
bn
4n
=
bn-1
4n-1
+1
,∴
bn
4n
-
bn-1
4n-1
=1

bn
4n
=1+(n-1)×1

bn=n4n
Sn=1•41+2•42+3•43+…+n4n,①
4Sn=1•42+2•43+3•44+…+n4n+1,②
①-②得:-3Sn=41+42+43+…+4n-n4n+1
Sn=
(3n-1)4n+1+4
9
(12分)

更多内容推荐