正项数列{an}满足a1=1,a2n+1=a2n+an+14,则1a1a2+1a2a3+…1anan+1=()A.2-4n+2B.1-2n+2C.4-2n+1D.2-4n+1-数学

题目简介

正项数列{an}满足a1=1,a2n+1=a2n+an+14,则1a1a2+1a2a3+…1anan+1=()A.2-4n+2B.1-2n+2C.4-2n+1D.2-4n+1-数学

题目详情

正项数列{an}满足a1=1,
a2n+1
=
a2n
+an+
1
4
,则
1
a1a2
+
1
a2a3
+…
1
anan+1
=(  )
A.2-
4
n+2
B.1-
2
n+2
C.4-
2
n+1
D.2-
4
n+1
题型:单选题难度:中档来源:不详

答案

an+12=an2+an+class="stub"1
4
=(an+class="stub"1
2
)
2
且an>0
an+1=an+class="stub"1
2

∵a1=1
∴数列{an}是以1为首项,以class="stub"1
2
为公差的等差数列
an=1+class="stub"1
2
(n-1)
=class="stub"1+n
2

class="stub"1
anan+1
=class="stub"4
(n+1)(n+2)
=4(class="stub"1
n+1
-class="stub"1
n+2

class="stub"1
a1a2
+class="stub"1
a2a3
+…+class="stub"1
anan+1
=4(class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+…+class="stub"1
n+1
-class="stub"1
n+2

=4(class="stub"1
2
-class="stub"1
n+2

故选A

更多内容推荐