数列{an}的前n项和为Sn,Sn+an=-12n2-32n+1(n∈N*)(Ⅰ)设bn=an+n,证明:数列{bn}是等比数列;(Ⅱ)求数列{nbn}的前n项和Tn;(Ⅲ)若cn=(12)n-an,

题目简介

数列{an}的前n项和为Sn,Sn+an=-12n2-32n+1(n∈N*)(Ⅰ)设bn=an+n,证明:数列{bn}是等比数列;(Ⅱ)求数列{nbn}的前n项和Tn;(Ⅲ)若cn=(12)n-an,

题目详情

数列{an}的前n项和为Sn,Sn+an=-
1
2
n2-
3
2
n+1(n∈N*
(Ⅰ)设bn=an+n,证明:数列{bn}是等比数列;
(Ⅱ)求数列{nbn}的前n项和Tn
(Ⅲ)若cn=(
1
2
)n-an
,dn=
1+
1
cn2
+
1
cn+12
,P=d1+d2+d3+…+d2013,求不超过P的最大整数的值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ) 因为Sn+an=-class="stub"1
2
n2-class="stub"3
2
n+1(n∈N*)
所以   ①当n=1时,2a1=-1,则a1=class="stub"1
2
,….(1分)
②当n≥2时,Sn-1+an-1=-class="stub"1
2
(n-1)2-class="stub"3
2
(n-1)+1

,….(2分)
所以2an-an-1=-n-1,即2(an+n)=a n-1+n-1,
所以bn=class="stub"1
2
b n-1(n≥2),而b1=a1+1=class="stub"1
2
,….(3分)
所以数列数列{bn}是首项为class="stub"1
2
,公比为class="stub"1
2
的等比数列,所以bn=(class="stub"1
2
)n
(Ⅱ)  由(Ⅰ)得nbn=class="stub"n
2n

所以  ①Tn=class="stub"1
2
+class="stub"2
22
+class="stub"3
23
+class="stub"4
24
+…+class="stub"n-1
2n-1
+class="stub"n
2n

2Tn=1+class="stub"2
2 
+class="stub"3
22
+class="stub"4
23
+…+class="stub"n-1
2n-2
+class="stub"n
2n-1
….(6分)
②-①得:Tn=1+class="stub"1
2
+class="stub"1
22
+…+class="stub"1
2n-1
-class="stub"n
2n
….(7分)Tn=
1-(class="stub"1
2
)
n
1-class="stub"1
2
-class="stub"n
2n
=2-class="stub"n+2
2n
…(8分)
(Ⅲ)由(Ⅰ)知a n=(class="stub"1
2
)n-n
∴cn=n…(9分)
而dn=
1+class="stub"1
n2
+class="stub"1
(n+1)2
=
n2(n+1)2+(n+1)2+n2
n2(n+1)2
=
n(n+1)+1
n(n+1)
=1+class="stub"1
n(n+1)
=1+class="stub"1
n
-class="stub"1
n+1


…(11分)
所以P=(1+class="stub"1
1
-class="stub"1
2
)+(1+class="stub"1
2
-class="stub"1
3
)+(1+class="stub"1
3
-class="stub"1
4
)+…+(1+class="stub"1
2013
-class="stub"1
2014
)=2014-class="stub"1
2014

故不超过P的最大整数为2013.…..(14分)

更多内容推荐